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Abstract: In this study, we present three types of unsupervised anomaly detection to identify anomalous test-takers based on their action
sequences in problem-solving tasks. The first method relies on the use of the Isolation Forest algorithm to detect anomalous test-takers based
on raw action sequences extracted from process data. The secondmethod transforms raw action sequences into contextual embeddings using
the Bidirectional Encoder Representations from Transformers (BERT) model and then applies the Isolation Forest algorithm to detect
anomalous test-takers. The third method follows the same procedure as the second method, but it includes an intermediary step of di-
mensionality reduction for the contextual embeddings before applying the Isolation Forest algorithm for detecting anomalous cases. To
compare the outcomes of the three methods, we analyze the log files from test-takers in the US sample (n = 2,021) who completed the problem-
solving in technology-rich environments (PSTRE) section of the Programme for the International Assessment of Adult Competencies (PIAAC)
2012 assessment. The results indicated that different groups of test-takers were flagged as anomalous depending on the representation (raw
action sequences vs. contextual embeddings) and dimensionality of action sequences. Also, when the contextual embeddings were used, a
larger number of test-takers were flagged by the Isolation Forest algorithm, indicating the sensitivity of this algorithm to the dimensionality of
input data.
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Process data refer to data stored in log files generated by
individuals’ interactions within a digital environment, such
as computerized assessments in education (He et al.,
2021). Records of events or actions occurring within a
computer system or application can be used for various
purposes, such as monitoring system performance, de-
bugging software issues, auditing user activity, and de-
tecting security threats. The structure of the log file is often
similar across data sources or systems generating it,
consisting of identifiers for users, timestamps, actions (or
events), and action descriptions. Recorded actions in the
log file mostly include keystroke operations (e.g., insert,
delete, copy, paste, jump, and replace) and mouse clicks
(e.g., click buttons, click links, double-click, select from
dropdown menus, drag and drop, scrolling, zooming,
searching, and sorting; Viswanathan & Vanlehn, 2017; Zhu
et al., 2019).

In digital assessment environments, rich information
stored in log files can be viewed as a supplementary source
of information that extends far beyond mere response
accuracy data (Goldhammer et al., 2017; Tang et al., 2021).
Process data indicators extracted from log files can offer a
profound glimpse into the intricate process of test-takers’

interactions while enabling more fine-grained analysis of
test-takers’ response process. Research over the past de-
cade has extensively leveraged this resource for multifac-
eted purposes. For example, researchers have harnessed
process data for identifying test-takers’ problem-solving
strategies (He & Davier, 2015; Stadler et al., 2019), gen-
eratingmore accurate scores at the group-level assessments
(Shin et al., 2022), exploring different patterns of reading
andwriting behaviors (Hahnel et al., 2022; Zhu et al., 2019),
and measuring test-takers’ engagement and motivation
levels (Nagy et al., 2022).

Recently, researchers have also begun to utilize se-
quential process data (e.g., action sequences in interactive
problem-solving tasks) to examine test-takers’ behavioral
patterns using unsupervised learning approaches, such as
k-means clustering (Hu et al., 2017), latent class analysis
(Gao et al., 2022), and sequence mining techniques (He
et al., 2022). For example, Xu et al. (2018) performed
latent class analysis to categorize test-takers based on their
action sequences in a complex problem-solving item in the
2012 Programme for International Student Assessment.
The authors reported that the latent classes with higher
intensities on certain types of actions (e.g., moving one
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slider at a time in the item) had a higher probability of
solving the item correctly than those taking inefficient
actions frequently. He et al. (2019) employed the k-means
algorithm to cluster test-takers based on their behavioral
patterns in the Programme for the International Assess-
ment of Adult Competencies (PIAAC) 2012 assessment.
Using a single task from the problem-solving in
technology-rich environments (PSTRE) section, He et al.
found that the test-takers could be grouped into three
clusters based on the number of actions where the clusters
with a larger number of actions had better proficiency
levels in the PSTRE tasks. Ulitzsch, He, and Pohl (2022)
used sequential data mining to examine common be-
havioral patterns associated with incorrect responses in a
PSTRE task from PIAAC 2012. Their findings showed that
there weremultiple groups of incorrect behavioral patterns
due to differences in test-takers’ level of effort and pro-
ficiency in subskills needed for solving the selected task
correctly.
In this study, we aim to leverage another unsupervised

learning approach, anomaly detection, to delineate distinct
groups of test-takers by analyzing their behavioral patterns
during interactive problem-solving tasks. Unsupervised
anomaly detection is commonly employed to discern ir-
regular or anomalous occurrences from regular or non-
anomalous ones, as observed in atypical traffic flow within
computer networks (Iglesias & Zseby, 2015) or fraudulent
activity within credit card transactions (Rezapour, 2019).
Unlike clustering and latent class analysis focusing on
grouping observations with similar patterns, anomaly
detection finds rare instances or outliers that deviate
significantly from the norm. While this method has been
adept at detecting aberrant response behaviors based on
answer changes, hint requests, and response time (e.g.,
Gorgun & Bulut, 2022; Pan & Choe, 2021; Van der Linden
& Jeon, 2012), it has not been utilized for exploring be-
havioral patterns within sequential process data. Thus, this
study will expand the existing literature on sequential
process data by delving into the application of unsuper-
vised anomaly detection methods. The results of this study
will offer new insights into how anomaly detection
methods can discern irregularities within the sequences of
test-takers’ behaviors during problem-solving tasks, while
also assessing the efficacy of these methods within the
context of interactive problem-solving tasks.
In the remainder of this paper, we describe the ex-

traction of information from sequential process data and
discuss the use of anomaly detection methods for iden-
tifying anomalous behavioral patterns. Next, we describe
three different methods to detect anomalous test-takers
based on sequential process data, apply these methods to
action sequences extracted from the PSTRE tasks in
PIAAC 2012, and discuss the similarities and differences in

the results. Finally, we present the implications, limita-
tions, and future directions of the study.

Theoretical Framework

Extracting Information From Process Data

A major challenge in extracting information from process
data is data representation. Raw process data are often
high-dimensional and unstructured, making them difficult
to analyze and interpret (Y. Chen et al., 2022). For example,
item U02 in PIAAC 2012 required test-takers to review a
number of e-mails, identify relevant requests, and submit
three meeting room requests using a simulated booking
site. When solving this item, each action taken by test-
takers is saved as a character string (e.g., START, FOL-
DER_VIEWED, MAIL_VIEWED_1, REPLY, and SUB-
MIT_UNFILLED) with a long-format structure in the log
file. This leads to unstructured datawithmultiple entries for
each test-taker corresponding to numerous actions per-
formed on the task. The number of entries (i.e., actions)
may vary from one test-taker to another because each test-
taker is likely to follow a different approach to completing
the task. Furthermore, many actions stored in the log file
may not be relevant to the solution behavior (i.e., noisy
actions), further complicating the analysis and interpreta-
tion of the process data (Tang et al., 2021).
To tackle the above challenges and extract as much

information as possible from process data, researchers
have proposed several information extraction methods,
including n-gram language modeling (He & Davier, 2015),
multidimensional scaling (MDS; Tang et al., 2020), and
sequence-to-sequence autoencoders (Tang et al., 2021).
The n-gram method is widely used in natural language
processing (NLP) and computational linguistics to model
continuous sequences of words, symbols, or tokens in a
document. In the context of sequential process data,
n-gram modeling treats an action sequence as a sequence
of integers or symbols that can be broken down into
n-grams (i.e., sequences of n adjacent symbols). After
generating a large number of n-grams, feature selection
methods can be performed to select the most informative
ones representing important action sequences (He &
Davier, 2015).
MDS is another technique to model high-dimensional

process data involving action sequences (Tang et al.,
2020). This exploratory method aims to create various
latent variables (i.e., features) based on the dissimilarity of
the action sequences and map them into Euclidean space
with a user-defined number of dimensions. Dissimilarity
measures such as the Levenshtein distance and Gómez-
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Alonso and Valls’s (2008) order-based sequence similarity
are particularly suitable for vectors of action sequences
with unequal lengths. Using raw features extracted from
MDS, principal component analysis (PCA) can be per-
formed to obtain orthogonal (i.e., uncorrelated) features
with increased interpretability.

In addition to MDS, autoencoders have been used for
dimension reduction and feature extraction with process
data (Tang et al., 2021). Specifically, sequence-to-
sequence encoders are applied to action sequences to
reconstruct them with an encoder–decoder mechanism.
The encoder converts the action sequences to low-
dimensional vectors (i.e., action embeddings), while the
decoder attempts to generate an output similar to the
original input using a recurrent neural network. As for
MDS, raw features obtained from the autoencoder can be
transformed into orthogonal features with principal
component analysis. Although the sequence-to-sequence
autoencoder method produces low-dimensional latent
vectors representing the original action sequences, it can
only process the input sequences in left-to-right or right-to-
left order (i.e., one direction), limiting its ability to capture
long-term dependencies in the action sequences.

Sequential Process Data as Contextual
Embeddings

Recent studies have shown that sequential process data
can be interpreted as a natural language sequence (e.g.,
Landauer et al., 2023), enabling the numerical represen-
tation of such data as semantic vectors (i.e., embeddings).
In NLP, an embedding is essentially a numerical repre-
sentation of a categorical feature (e.g., a word) with
floating point values. Since each action sequence resem-
bles a sentence comprising multiple words, a semantic
model can be used to obtain embeddings for the unique
actions (i.e., tokens) stored in the sequence. For example, a
pretrained transformer, such as Bidirectional Encoder
Representations from Transformers (BERT; Devlin et al.,
2018), can use semantic encoding to learn contextual
relations between the actions within a sequence and
produce an embedding for each sequence. Not only does
this process put the actions (i.e., character strings) into a
numerical vector space, but it also maintains the relative
positions of the actions in the sequence.

Pretrained transformers, including BERT, can convert a
sequence into embeddings in multiple steps. First, the input
sequence (e.g., a sentence) is transformed into individual
tokens (e.g., words or subwords) where each token is as-
signed a unique numerical identifier (token ID) from the
model’s vocabulary. Each token is then represented as an
initial embedding in the model. Next, positional encodings

are generated for the initial embeddings to capture infor-
mation about the position of each token in the sequence.
Transformers consist of multiple layers, each containing
two main sublayers (i.e., the self-attention mechanism and
a feedforward neural network). The self-attention mecha-
nism is used to place the embeddings onto a vector space,
where similar instances are positioned closer to each other
than less similar ones (Guo et al., 2021; Landauer et al.,
2023). This process assigns weights (i.e., attention scores) to
specific inputs based on the relationships between all pairs
of tokens in the sequence. The output from the self-
attention mechanism is passed through a feedforward
neural network within the same layer. This process is re-
peated for each layer in the transformer via layer stacking,
making the output of one layer serve as the input to the next
layer. At the end, the output embeddings from the final
layer are pooled to obtain a fixed-size representation of the
entire input sequence.

Figure 1 illustrates how BERT, as a pretrained trans-
former, can transform a hypothetical action sequence,
[“START,” “VIEW,” “NEXT,” “SELECT,” “SUBMIT”],
into embeddings. BERT has three distinct types of em-
beddings: token embeddings, positional embeddings, and
segment embeddings to represent sequential input data.
As described above, token embeddings refer to a list of
token IDs based on unique actions in the sequence, while
positional embeddings show token position within the
sequence. Segment embeddings are a list of IDs dis-
tinguishing different sequences. Segment embeddings
may not be relevant in this example unless the action
sequence is divided into multiple action blocks
(i.e., segments). To indicate the beginning and end of the
sequence, the BERT Tokenizer adds two new tokens,
[CLS] and [SEP], to the sequence and then assigns a
unique ID to each token from its vocabulary containing all
English characters and the 30,522 common words and
subwords found in the corpus the model was trained on.
Next, it creates token, positional, and segment embed-
dings for the tokens within the embedding layer. In the
final step, the BERT embedding layer is used to compute
the final embedding with 768 values for each input token
by combining the token, positional, and segment em-
beddings (see Devlin et al., 2018, for further details on the
model architecture). Since BERT can analyze the action
sequences in both forward and backward directions, it can
capture long-term dependencies and discrepancies in the
problem-solving process.

Anomaly Detection With Process Data

The information obtained from log files has been used for
addressing a wide range of research questions, such as
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identifying problem-solving strategies (Stadler et al.,
2019), exploring different patterns of behaviors (Hahnel
et al., 2022; Zhu et al., 2019), and measuring test-takers’
ability, engagement, and motivation levels (Nagy et al.,
2022; Xiao et al., 2021). However, only a few studies have
utilized process data for anomaly detection (e.g., Gorgun&
Bulut, 2022; Liao et al., 2021). The term anomaly (also
referred to as aberrance or outlier in the literature) de-
scribes rare events, items, or observations that differ
significantly from standard (i.e., norm) patterns. In edu-
cational testing, anomalous cases (e.g., responses or test
scores) are often identified at individual test-taker and
group levels based on aberrant response behaviors, such as
careless responding (Ulitzsch, Yildirim-Erbasli, et al.,
2022), unmotivated responding (Johns & Woolf, 2006),
hint abuse or overuse (Gorgun & Bulut, 2022), and
cheating (Kamalov et al., 2021; Kim et al., 2016). However,
anomalous cases may also stem from a positive solution
behavior. For example, when undertaking a complex task,
test-takers may have to identify a set of manageable
subgoals and perform corresponding actions (He et al.,
2021). In this process, a creative strategy for breaking
down the tasks very efficiently could be considered a
desirable form of anomaly.
Anomaly detection methods for log files can be cate-

gorized into two groups based on the availability of labels
for identifying usual and anomalous cases (Landauer et al.,
2023; Meena Siwach & Mann, 2022). Supervised machine
learning (ML)methods, such as logistic regression, support

vector machines, and decision trees, are applied to labeled
data to learn the difference between usual and anomalous
cases based on a set of predictors (Omar et al., 2013).
However, anomaly detection often boils down to the
problem of finding anomalous cases via unsupervised ML
methods without ground truth (i.e., pre-existing labels for
regular and anomalous cases). This is particularly chal-
lenging when dealing with large amounts of unstructured
log files for which manual labeling by human annotators
may not be feasible. Thus, unsupervised anomaly detec-
tion methods (e.g., Isolation Forest, Local Outlier Factor,
Elliptic Envelope, and Log Clustering) are often used to
establish a profile of usual data points and report anom-
alous cases deviating from this profile. In a recent study,
Gorgun and Bulut (2022) used several unsupervised
methods (e.g., Gaussian Mixture Model, Isolation Forest,
and Local Outlier Factor) to identify aberrant responses in
the intelligent tutoring system based on response time,
action frequency, and response accuracy. Their findings
showed that the unsupervised methods flagged similar
responses as aberrant, which had negative correlations
with students’ level of concentration and positive corre-
lations with their boredom.
In recent years, various deep learning methods have

been proposed for anomaly detection in the system log
files generated by an operating system, application, server,
and so on (e.g., Catillo et al., 2022; Le & Zhang, 2021;
Wittkopp et al., 2021). Furthermore, some researchers
have combined these methods with NLP techniques to

Figure 1. Transforming action sequences into contextual embeddings via BERT.
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facilitate the processing of complex messages in log files
(e.g., S. Chen & Liao, 2022; Guo et al., 2021; Ryciak et al.,
2022; Shao et al., 2022). With pretrained large language
models such as BERT (Devlin et al., 2018), sequential log
entries over time or across multiple users are transformed
into dense, numerical vectors (i.e., embeddings) that retain
the order and dependency of the entries in a lower di-
mensional space. Then, a deep learning algorithm for
labeled data (e.g., recurrent neural networks) or a clus-
tering algorithm for unlabeled data (e.g., k-means clus-
tering) can be applied to the embeddings for identifying
clusters with usual log sequences and finding other clus-
ters with significant deviations from the usual log se-
quences (e.g., anomalous cases). Previous research
suggests that NLP-based methods can improve the ac-
curacy of anomaly detection and make further analysis of
suspicious sequences much easier (Ryciak et al., 2022).

To date, several studies have combined NLP-based
methods with unsupervised ML techniques to detect
anomalies using log files from computer and network
systems. For example, Wang and AnilKumar (2023) used
linguistic models, such as BERT and Word2Vec, to extract
features (i.e., embeddings) from HTTP traffic packets,
performed PCA and autoencoders to reduce the dimen-
sionality of embeddings, and then used the lower-
dimensional embeddings to detect system anomalies
based on unsupervised techniques (e.g., One-Class Support
VectorMachine, Isolation Forest, and Local Outlier Factor).
In a recent study, Karlsen (2023) also used several pre-
trained transformers (e.g., BERT, RoBERTa, GPT-2, and
GPT-NEO) to extract contextual embeddings from system
logs files. After the feature extraction procedure, they used
several unsupervised methods (e.g., k-means, hierarchical
clustering, Isolation Forest, and Self-Organizing Maps) to
cluster the features and detect anomalies. The findings of
Karlsen’s study showed that the large language models
exhibited enhanced capabilities in anomaly detection by
extracting meaningful contextual embeddings.

Despite the advancements in leveraging NLP-based
methods for anomaly detection in computer and network
systems, a notable gap remains in the application of feature
extraction with languagemodels to sequential process data.
While existing studies have successfully employed lin-
guistic models such as BERT, Word2Vec, and various
pretrained transformers to extract features from log files
and enhance anomaly detection in system-related activi-
ties, there is a paucity of research focusing on the appli-
cation of these techniques to sequential processes.
Sequential process data with a time-ordered sequence of
events (e.g., test-takers’ actions in interactive problem-
solving tasks) pose unique challenges that require spe-
cialized approaches. Addressing this gap could significantly
contribute to improving the detection of anomalies in

dynamic and evolving systems where the temporal aspect
plays a crucial role. Thus, further research is needed to
explore and adapt languagemodel-based feature extraction
methodologies to the specific characteristics of sequential
process data for building an effective anomaly detection
framework.

Current Study

This study aimed to investigate whether unsupervised
anomaly detection could help distinguish regular and
anomalous test-takers based on their action sequences in
the PSTRE domain of PIAAC 2012. Using the log files from
American adults who participated in PIAAC 2012, we
employed three unsupervised anomaly detection methods.
In the first method, we applied the Isolation Forest algo-
rithm to detect anomalous test-takers based on raw action
sequences extracted from the log files. In the second
method, we first transformed the raw action sequences into
contextual embeddings using BERT and then performed
unsupervised anomaly detection using Isolation Forest. The
third method also started with the transformation of raw
action sequences into contextual embeddings using BERT.
However, as an intermediary step, PCA was performed to
put the embeddings onto a lower-dimensional space. In the
final stage, the Isolation Forest algorithmwas applied to the
lower-dimensional data to detect anomalous test-takers
(see Figure 2 for an overview of the anomaly detection
methods). To compare the three methods, we examined
several test-related outcomes (e.g., average sequence
length, response time, and incorrect response rates) and the
distribution of PSTRE proficiency levels for anomalous and
regular test-takers. Also, we explored the relationship be-
tween anomaly status and test-taker characteristics (e.g.,
informational and communicative technology [ICT] use at
home and work) associated with test-takers’ problem-
solving behaviors in PIAAC 2012 (Liao et al., 2019;
Zhang et al., 2021).

Methods

Sample and Instruments

Data for the current study came from the 2012 adminis-
tration of PIAAC – an initiative of the Organisation for
Economic Co-operation and Development (OECD) to as-
sess the proficiency levels of adults between the ages of 16
and 65 in several information-processing skills (e.g., lit-
eracy, numeracy, and problem-solving). This study focused
on the PSTRE domain of PIAACwith 14 items (seven items
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in each of the two booklets) measuring the intersection of
computer literacy and the cognitive skills required to solve
digital problem-solving tasks (Organization for Economic
Cooperation and Development [OECD], 2019).1 We se-
lected the PSTRE domain because, in addition to the re-
sponse accuracy data with correct, incorrect, and partially
correct responses, there is also a log file containing process
data on the participants’ behavioral patterns (i.e., action
sequences and the associated times) for the PSTRE items.
As the participants interacted with the items in different
environments (i.e., e-mail, web, word processor, and
spreadsheet), log files recorded the actions taken during
the assessment, such as opening a folder, clicking a link,
and using the help function.
We used the participants in the US sample (n = 2,021) who

completed the PSTRE items in the first (n = 1,341) or second

(n = 680) booklet and the background questionnaire in
PIAAC 2012. In the final sample, there were 1,090 female
participants (54%) and 931 male participants (46%). There
were nearly equal proportions (∼20%) of participants from
each age group (24 or less, 25–34, 35–44, 45–54, and 55+).
Almost half of the sample (49%) reported their highest level
of schooling as either high school or less than high school,
while the other half had an educational level above high
school (51%). Furthermore, most of the participants (89%)
were native speakers of English. Finally, 76% of the par-
ticipants were employed, and the remaining 24% were
unemployed or out of the labor force when participating in
PIAAC 2012. Also, the PIAAC 2012 database included ad-
ditional information on the participants, such as their en-
gagement in literacy and numeracy activities, use of ICT at
home and work, occupation, and immigration status.

Figure 2. Anomaly detection methods for sequential process data. Adapted from Wittkopp et al. (2021).

1 The PSTRE items are not publicly available, but sample PSTRE items in PIAAC 2021 can be seen at http://www.oecd.org/skills/piaac/Problem%
20Solving%20in%20TRE%20Sample%20Items.pdf.
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Extracting Process Data

Sequential process data for the present study were
extracted using several steps. First, we used the LogDa-
taAnalyzer software program on the PIAAC log file website
to transform the raw log file in the .xml format into a
structured dataset in a long format (i.e., multiple rows for
each participant corresponding to actions taken to solve
each PSTRE item). Second, we replaced the underscore
separating some action descriptions with a space (e.g.,
“FOLDER_VIEWED” to “FOLDER VIEWED” in item
U01A – Party Invitations) to facilitate the tokenization
process. Third, to create a single line of action sequences,
we reshaped the dataset to a wide format where each
participant had a vector of action sequences separated by a
hyphen (e.g., [START - FOLDER VIEWED - . . . - NEXT
ITEM - END]). In the last step, we changed the vector of
action sequences from uppercase to lowercase. These data
extraction steps were completed using the R programming
language (R Core Team, 2022).

Table 1 presents a descriptive summary of action se-
quences and proportion-correct scores for the PSTRE
items. Although the minimum length of action sequences
was similar across the items (ranging from 3 to 10), the
maximum length varied significantly (ranging from 68 to
1,179), indicating a distinctive problem-solving process
underlying each PSTRE item. The number of unique ac-
tions for each item indicated a moderate relationship (r =
0.45) with the average sequence length because the test-
takers had to use some actions repeatedly as they com-
pleted the task. For example, U04A – Class Attendance
with relatively fewer unique actions (25) had the longest

average sequence (122.49) among all PSTRE items. As the
test-takers solved this item, they had to repeatedly use
DOACTION (i.e., a user interaction related to triggering a
programmatic function; 62,654 times). Furthermore, item
difficulty (i.e., average scores) indicated a negative rela-
tionship (r = �0.36) with the average length of action
sequences, suggesting that the difficult items (e.g.,
U04A – Class Attendance and U02 – Meeting Room)
generally involved longer action sequences than the easier
items in the PSTRE test. In addition, the items in the
second booklet (i.e., U19A to U23) were generally more
straightforward and required more actions on average
than those presented in the first booklet (i.e., U01A to
U04A).

Computing Contextual Embeddings

To obtain contextual embeddings for the action se-
quences, we first tokenized the action sequences for each
item using the tokenizer function from the pretrained
BERT base model, including 12 encoder layers with 768
hidden units and 110 million trainable parameters
(i.e., bert-base-uncased; Devlin et al., 2018). The tokenizer
checked if each word in the action descriptions was in-
cluded in BERT’s vocabulary. Words that could not be
found in BERT’s vocabulary were broken into the largest
possible word contained in the vocabulary or decomposed
into individual characters (e.g., “action” became “##act”
and “##ion”). This process yielded a vector of up to 512
tokens, which is themaximum length of input sequence for
BERT. Padding was applied to ensure shorter action

Table 1. Descriptive statistics for action sequences (Seq.) in PSTRE items

Booklet Item ID Task name Min seq. length Max seq. length M (SD) seq. length Average score (%) Number of unique actions

1 U01A Party invitations 3 223 38.29 (23.19) 61.53 37

1 U01B Party invitations 7 520 68.09 (47.92) 43.33 38

1 U03A CD Tally 8 371 36.47 (33.64) 36.76 26

1 U06A Sprained ankle 3 86 19.15 (7.77) 26.69 18

1 U06B Sprained ankle 10 119 36.98 (20.36) 49.74 28

1 U21 Tickets 10 153 40.87 (16.16) 38.60 24

1 U04A Class attendance 10 857 122.49 (139.96) 13.04 25

2 U19A Club membership 10 268 48.03 (27.23) 65.82 26

2 U19B Club membership 10 349 53.73 (41.94) 55.22 21

2 U07 Book order 10 1,047 46.44 (39.40) 46.49 24

2 U02 Meeting room 10 1,179 101.96 (120.14) 19.60 56

2 U16 Reply all 4 822 105.16 (103.48) 52.95 36

2 U11B Locate email 10 505 42.80 (40.83) 29.00 35

2 U23 Lamp return 3 637 51.27 (48.42) 37.32 38

Note. The order of PSTRE items reflects the actual item positions in PIAAC 2012. The first seven PSTRE items were administered in the first booklet, whereas
the last seven PSTRE items were administered in the second booklet.
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sequences were the same length (i.e., the maximum length
of 512 tokens), resulting in vectors ending with zeroes for
participants with less than 512 actions for a given item.
Also, the tokenizer captured the positional embeddings for
each token to show the token position within the action
sequence and the segment embeddings representing each
action sequence. After breaking the action sequences into
tokens, we converted the vector of tokens to a vector of
token indices (i.e., a unique identification number for each
token). Figure 3 shows how a test-taker’s actions for
U01A – Party Invitations were transformed into a vector of
token indices. In the final step, we ran the three vectors
(token, positional, and segment embeddings) through the
BERT embedding layer to form a 768-dimensional em-
bedding vector based on the last layer (S. Chen & Liao,
2022).

Anomaly Detection With Isolation Forest

To detect anomalous cases in the action sequences, we
used the Isolation Forest (also referred to as iForest) al-
gorithm. Previous studies indicated that Isolation Forest is
a robust algorithm capable of detecting anomalous cases in
high-dimensional data (Gorgun & Bulut, 2022; Liu et al.,
2008). Unlike distance-, density-, or model-based
methods prioritizing the construction of a profile of reg-
ular instances to detect anomalies, Isolation Forest aims to
isolate instances of unusual instances using a tree structure
(Liu et al., 2008). The central assumption underlying
anomaly detection with Isolation Forest is that unusual
instances are different and less frequent than regular in-
stances, and thus, they can be isolated quickly in the
partitioning process, whereas regular instances are likely
to require more partitions in tree-based structures.

Isolation Forest starts by randomly selecting a point
between the maximum and minimum values of a feature
randomly picked from the dataset. Then, the selected
feature’s range is used to split the tree into two nodes based
on the randomly chosen value (smaller values on the left
and larger values on the right). This iterative process
continues until all the instances in the dataset are parti-
tioned. Then, shorter paths in the tree structure are flagged
as unexpected instances (i.e., anomalies). The algorithm
can easily distinguish those instances from the regular in-
stances because the flagged instances have shorter paths
than regular instances. An anomaly score between 0 and 1 is
calculated for each instance by comparing its path length to
the expected path length for regular instances, and scores
larger than 0.5 (or a user-defined threshold) are considered
anomalous. Mathematically, this can be written as follows:

sðx; nÞ ¼ 2�
EðhðxÞÞ
cðnÞ ; (1)

where h(x) represents the length of the path of observation x,
E(h(x)) is the average h(x) from a collection of isolation trees,
c(n) is the average path length of a futile search, and n is the
number of external nodes (Liu et al., 2008).
The Isolation Forest algorithm was applied to three

types of data: (1) the raw action sequences (after vecto-
rizing the actions with one-hot encoding), (2) the con-
textual embeddings obtained from BERT, and (3) the
lower-dimensional contextual embeddings based on the
first five principal components extracted from PCA. The
first five principal components retained 85%–92% of the
total variance in the embeddings. We used the ensem-
ble.IsolationForest function from the sklearn library
(Pedregosa et al., 2011) in Python to implement the Iso-
lation Forest algorithm. In the function, contamination

Figure 3. Transforming PSTRE action sequences into token indices (Item U01A – Party Invitations).
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rate is a hyperparameter that allows the user to manually
specify a particular rate of anomalous cases. In this study,
contamination rate was set to auto to determine the op-
timal rate for anomaly detection. This option allowed us to
search for the optimal rate of anomalous cases for each
item rather than extracting a fixed proportion of anoma-
lous cases across all items. This is one of the advantages of
employing Isolation Forest for anomaly detection because
the user may not have conceptual or theoretical evidence
regarding the rate of anomalous responses in the dataset
(see Gorgun & Bulut, 2022).

The three anomaly detection methods were applied to
the action sequences from each item in the PSTRE do-
main separately. Our codes for preprocessing the action
sequences via BERT and detecting anomalous cases via
Isolation Forest are available at https://osf.io/cdm9t/.
For each method, we first explored the characteristics of
anomalous and regular test-takers based on test-related
outcomes, such as average sequence length, and re-
sponse times. Next, we examined how test-takers’
PSTRE proficiency levels differed based on their
anomaly status (i.e., regular or anomalous test-taker). To
account for error at the individual test-taker level, PIAAC
reports 10 plausible values of proficiency (i.e., multiple
imputations drawn from a posteriori distribution) rather
than a single estimate of proficiency (for details about
how plausible values are generated, refer to OECD,
2019). As the plausible values indicate similar pat-
terns, we only used the first plausible value (PV1) to
examine how anomaly flags derived from our analysis
and PSTRE proficiency levels in PIAAC 2012 were re-
lated. Finally, we reviewed the relationship between the

anomaly status and several variables from the back-
ground questionnaire in PIAAC 2012.

Results

The Number of Anomalous Cases

Table 2 shows the number of anomalous test-takers
identified by the three anomaly detection methods. The
Isolation Forest algorithm based on the raw action se-
quences (iForest) and the lower-dimensional contextual
embeddings (BERT + PCA + iForest) identified roughly
10% of the test-takers as anomalous for each PSTRE item.
However, the number of anomalous cases identified by the
same algorithm based on the contextual embeddings
(BERT + iForest) varied significantly across the items
(ranging from 8.74% to 21.28%). This method identified
more than 18% of the test-takers as anomalous in the items
with a high average sequence length (e.g., U04A, U02, and
U16). The higher variability observed in the results based
on contextual embeddings (BERT + iForest) may be at-
tributed to the inherent complexity introduced by the high
dimensionality of the data (768 dimensions), potentially
leading to increased false positives or a greater sensitivity
to action-specific characteristics. Notably, when employ-
ing lower-dimensional contextual embeddings (BERT +
PCA + iForest), the algorithm exhibited a more consistent
identification rate across items, indicating that the addi-
tional dimensionality reduction step might have contrib-
uted to stabilizing its performance.

Table 2. The percentages of anomalous cases by anomaly detection methods

Booklet Item ID Task name n

% of anomalous cases

iForest BERT + iForest BERT + PCA + iForest

1 U01A Party invitations 1,337 10.02 9.72 10.02

1 U01B Party invitations 1,334 10.04 10.04 10.04

1 U03A CD Tally 1,333 10.05 10.13 10.05

1 U06A Sprained ankle 1,330 10.00 12.71 9.32

1 U06B Sprained ankle 1,329 10.01 18.96 10.01

1 U21 Tickets 1,329 10.01 14.15 10.01

1 U04A Class attendance 1,329 10.01 20.84 10.01

2 U19A Club membership 1,340 10.00 8.88 10.00

2 U19B Club membership 1,340 10.00 10.75 10.00

2 U07 Book order 1,340 10.00 12.69 9.85

2 U02 Meeting room 1,340 10.00 18.58 10.00

2 U16 Reply all 1,339 10.01 21.28 10.01

2 U11B Locate email 1,338 10.01 10.76 10.01

2 U23 Lamp return 1,338 10.01 8.74 8.89

Note. N = The number of valid test-takers for each PSTRE item.
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For each method, we also created an UpSet plot with the
UpSetR package (Conway et al., 2017) in R to show the
intersections (i.e., overlap) among the PSTRE items in
terms of the number of anomalous test-takers (see Figures
4, 5, and 6). In the UpSet plot, each bar represents the
number of anomalous cases (see the values above the
bars), each row corresponds to a particular PSTRE item
(sorted by the number of anomalous cases), and the filled-
in cells indicate unique observations (detached dots) and
intersections (dots connected vertically with others). For
example, 59 test-takers were flagged as anomalous only in
item U01A, whereas eight test-takers were flagged as
anomalous in both items U01A and U21 (see Figure 4 for
Isolation Forest based on raw action sequences). Figures 4,
5, and 6 show similar patterns in terms of the number of
unique and intersecting anomalous cases across the

PSTRE items. The detached dots with high bars on the left
part of the plot indicate that most test-takers were only
identified as anomalous in one of the PSTRE items,
whereas a smaller number of test-takers were flagged as an
anomaly in either two or three items. None of the test-
takers had anomalous action sequences inmore than three
PSTRE items.

Anomaly Status and Test-Related Outcomes

Tables 3, 4, and 5 show a descriptive summary of test-
related outcomes by anomaly status for each method.
Several patterns deserve to be scrutinized to better un-
derstand these descriptive results. First, the anomalous
test-takers generally had longer action sequences and

Figure 4. Anomalous cases across the 14 PSTRE items in Isolation Forest.
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higher response times than the regular test-takers across
all PSTRE items, except for item U04 in the lower-
dimensional contextual embeddings (iForest + PCA +
BERT). For example, for U03A in the first booklet and
U11B in the second booklet, the average sequence lengths
for the anomalous test-takers were at least three times
longer than those for the regular test-takers. Second, the
average response times for the anomalous test-takers were
substantially higher than those for the regular test-takers,
except for item U03A in the raw action sequences (iFor-
est). The differences between the anomalous and regular
test-takers in terms of their average sequence length and
average response time seemed highly correlated (r > 0.73)
for all three methods. This was an anticipated finding
because the test-takers with longer action sequences were

likely to spend more time on the PSTRE items than the
test-takers with shorter action sequences.

The third pattern was about the average response ac-
curacy in the PSTRE items. The results showed that the
percentages of incorrect responses for the anomalous test-
takers were generally lower than those for the regular test-
takers (two to six items in the first booklet and six items in
the second booklet). In addition, the percentages of in-
correct responses for the regular test-takers indicated a
moderate, positive correlation with the average sequence
length (r > 0.45) and the average response time (r > 0.47).
This finding suggests that the regular test-takers having
more actions and spending more time on the items had a
higher probability of answering the items incorrectly.
However, these relationships were quite different for the

Figure 5. Anomalous cases across the 14 PSTRE items in BERT + Isolation Forest.
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anomalous test-taker group. There was a moderate, neg-
ative correlation (around r = �0.3) between the percent-
ages of incorrect responses and the average sequence
length, suggesting that the anomalous test-takers with
longer action sequences were less likely to answer the
items incorrectly. Also, unlike the regular test-taker group,
the correlation between the percentages of incorrect re-
sponses and the average response time was relatively weak
(around r = 0.15) for the anomalous test-takers.

Anomaly Status and Proficiency Level

We also examined the relationship between anomaly
status and PSTRE proficiency levels (PV1). Tables 6, 7,
and 8 show a descriptive summary of PV1 by anomaly

status and the results of independent samples t-tests
comparing proficiency levels of anomalous and regular
test-takers. For all three methods, the average PV1 values
for the anomalous test-takers seemed to vary across the
items due to different samples being flagged as anoma-
lous. In contrast, the average PV1 values were mostly
similar for the regular test-takers. The anomalous test-
takers outperformed the regular test-takers in 13 PSTRE
items in the raw action sequences and 10 items in the
contextual embeddings. The difference between the two
groups was statistically significant in all PSTRE items,
except for three items (U01A, U06B, and U07) in the
contextual embeddings and two items (U19A and U19B)
in the lower-dimensional contextual embeddings. The
larger differences in PV1 were mostly observed in the
PSTRE items with longer action sequences (e.g., U04A,

Figure 6. Anomalous cases across the 14 PSTRE items in BERT + PCA + Isolation Forest.
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U02, U16, and U23). Figure 7 shows the boxplots of
PSTRE proficiency levels by anomaly status for each
method. The median PSTRE proficiency levels for
anomalous test-takers were generally higher than those
for regular test-takers across all items when the raw
action sequences were used (iForest), whereas, with the
contextual embeddings, there was a greater variation
among the items regarding the median PSTRE profi-
ciency levels for anomalous and regular test-takers. Re-
gardless of the anomaly detectionmethod, the anomalous
test-takers appeared to have a narrower ability distribu-
tion than the regular test-takers.

Anomaly Status and Background Variables

To further explore the profiles of anomalous and regular
test-takers in PIAAC 2012, we evaluated the relationship
between anomaly status (1: anomalous test-taker; 0: regular
test-taker) and several background variables. Specifically,
we computed point-biserial correlations between anomaly
status and the following variables: (1) ICT skill use at home
(ICTHome), (2) ICT skill use at work (ICTWork), (3) PSTRE
proficiency level (PV1), (4) log of the number of actions in
solving the item, (5) log of time to the first action in solving
the item, and (6) log of total response time in solving the

Table 3. A descriptive summary of test-related outcomes by anomaly status based on Isolation Forest

Item ID

M (SD) sequence length M (SD) response time Incorrect response %

Anomalous Regular Anomalous Regular Anomalous Regular

U01A 89.16 (32.59) 32.63 (12.62) 274.23 (181.00) 103.92 (80.21) 25.37 29.51

U01B 162.64 (55.27) 57.53 (33.22) 315.46 (183.73) 134.53 (82.66) 43.28 58.17

U03A 271.44 (220.39) 28.24 (16.91) 110.17 (51.69) 112.15 (82.12) 19.40 68.14

U06A 36.91 (10.96) 17.17 (3.85) 204.73 (99.94) 132.32 (91.82) 80.00 72.60

U06B 73.59 (16.07) 32.90 (16.32) 214.89 (100.80) 96.15 (73.73) 36.84 51.76

U21 69.58 (16.66) 37.68 (12.55) 285.27 (119.84) 175.18 (92.10) 57.90 61.79

U04A 447.69 (97.55) 86.33 (87.39) 609.93 (251.90) 265.72 (274.65) 62.41 86.87

U19A 103.78 (28.33) 41.84 (18.75) 182.56 (109.37) 118.42 (77.95) 18.66 37.14

U19B 145.14 (45.02) 43.58 (26.44) 388.24 (288.96) 173.09 (11.88) 20.90 38.23

U07 106.80 (84.96) 39.74 (21.86) 230.29 (76.66) 99.37 (65.54) 20.15 57.21

U02 343.57 (188.61) 75.12 (70.00) 459.05 (165.46) 188.63 (195.01) 23.39 74.63

U16 338.72 (117.65) 79.18 (60.19) 319.74 (137.79) 115.09 (84.56) 16.42 50.46

U11B 132.03 (52.31) 32.87 (23.76) 345.67 (1,028.63) 77.33 (59.50) 82.09 60.38

U23 147.73 (88.44) 40.54 (24.67) 218.22 (120.64) 86.17 (91.95) 24.63 61.71

Table 4. A descriptive summary of test-related outcomes by anomaly status based on BERT and Isolation Forest

Item ID

M (SD) sequence length M (SD) response time Incorrect response %

Anomalous Regular Anomalous Regular Anomalous Regular

U01A 88.48 (34.49) 32.89 (12.95) 268.46 (188.27) 105.24 (81.14) 26.15 29.41

U01B 163.24 (54.79) 57.46 (33.10) 317.96 (177.91) 134.25 (83.45) 46.27 57.83

U03A 106.74 (54.71) 28.55 (17.44) 267.69 (221.60) 112.44 (82.22) 24.44 67.61

U06A 30.42 (15.07) 17.51 (3.89) 171.19 (111.13) 134.99 (91.75) 86.98 71.32

U06B 50.24 (29.09) 33.87 (16.23) 146.29 (116.40) 99.07 (72.58) 56.75 48.75

U21 44.94 (30.89) 40.20 (12.02) 195.00 (139.85) 184.74 (92.76) 83.51 57.76

U04A 171.14 (125.37) 109.68 (140.84) 548.06 (327.20) 235.16 (242.44) 88.05 87.74

U19A 104.39 (31.75) 42.54 (19.40) 189.90 (115.71) 118.49 (77.23) 21.85 35.38

U19B 143.10 (44.92) 42.97 (25.53) 424.14 (214.55) 166.97 (111.25) 20.14 38.46

U07 82.35 (84.96) 41.23 (22.79) 176.13 (93.72) 103.21 (70.13) 37.06 55.90

U02 206.62 (162.88) 78.08 (92.86) 393.45 (175.33) 175.09 (193.93) 41.37 75.89

U16 190.51 (92.03) 82.88 (93.89) 229.87 (118.44) 110.19 (92.46) 25.26 52.94

U11B 130.34 (51.03) 32.24 (22.79) 341.21 (992.09) 75.62 (56.84) 82.64 60.13

U23 152.30 (94.43) 41.59 (25.47) 218.29 (115.32) 88.11 (94.42) 31.62 60.52
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item. Tables 9, 10, and 11 show the correlations between
anomaly status for each PSTRE item and the background
variables. Two ICT-related variables (ICTHome and ICT-
Work) generally indicated weak correlations with anomaly
status for all three methods. The number of actions and
response time indicated stronger associations with anomaly
status. These correlations were negative for the raw action
sequences (iForest) and the lower-dimensional contextual
embeddings (BERT + PCA + iForest), suggesting that the
test-takers with fewer actions and smaller response times

were more likely to be flagged as an anomaly. The corre-
lations between anomaly status and time to the first action
were also mostly negative but smaller in magnitude.
However, these relationships were opposite for the con-
textual embeddings (BERT + iForest), suggesting that the
test-takers with more actions, slower first reaction to the
item, and slower response time were more likely to be
flagged as anomalous. Overall, these findings suggest that
the three methods are likely to flag different test-takers as
anomalous depending on the representation (raw vs.

Table 5. A descriptive summary of test-related outcomes by anomaly status based on BERT, PCA, and Isolation Forest

Item ID

M (SD) sequence length M (SD) response time Incorrect response %

Anomalous Regular Anomalous Regular Anomalous Regular

U01A 75.99 (45.52) 34.09 (12.86) 235.31 (198.46) 103.47 (84.09) 35.07 28.43

U01B 145.19 (74.22) 59.38 (34.69) 293.99 (192.41) 136.93 (85.33) 59.70 56.33

U03A 110.05 (51.77) 28.25 (16.95) 270.73 (221.35) 112.23 (81.98) 20.90 67.97

U06A 32.06 (16.47) 17.82 (4.46) 172.81 (120.71) 136.18 (91.52) 88.71 71.72

U06B 65.66 (25.07) 33.79 (17.02) 200.54 (117.83) 97.94 (73.34) 46.62 50.67

U21 46.93 (34.29) 40.20 (12.48) 197.03 (148.46) 184.99 (93.99) 84.96 58.78

U04A 96.55 (37.13) 125.38 (146.74) 410.75 (292.82) 287.89 (288.67) 83.33 84.53

U19A 92.93 (40.80) 43.06 (19.78) 180.94 (113.75) 118.60 (77.40) 31.34 34.49

U19B 134.22 (61.43) 44.79 (27.17) 393.84 (228.12) 172.47 (118.92) 26.87 37.56

U07 75.32 (98.92) 43.29 (23.63) 159.15 (107.83) 107.36 (71.56) 59.09 52.90

U02 166.58 (152.86) 94.78 (113.78) 330.04 (163.28) 202.96 (209.31) 45.52 72.22

U16 125.34 (80.69) 102.91 (105.49) 169.76 (102.57) 131.82 (110.18) 35.82 48.30

U11B 128.89 (55.77) 33.22 (24.32) 344.88 (1,029.02) 77.42 (59.15) 79.10 60.71

U23 142.38 (100.81) 42.38 (26.43) 204.42 (120.90) 89.24 (95.31) 40.34 59.72

Table 6. A descriptive summary of PSTRE proficiency levels (PV1) by anomaly status based on Isolation Forest

Item ID

Anomalous test-takers Regular test-takers

Mean difference t-statisticM SD Min Max M SD Min Max

U01A 271.7 39.2 164.3 397.6 279.9 42.3 131.7 402.8 �8.2 �2.3*

U01B 296.2 31.5 191.2 354.3 277.2 42.6 131.7 402.8 18.9 6.3*

U03A 303.9 41.7 131.7 402.8 276.4 41.2 158.2 387.2 27.5 7.3*

U06A 288.3 34.6 206.5 387.2 278.1 42.7 131.7 402.8 10.2 3.1*

U06B 300.2 36.8 220.1 402.8 276.8 42.0 131.7 397.6 23.5 6.9*

U21 290.6 32.3 213.5 365.7 277.9 42.8 131.7 402.8 12.7 4.1*

U04A 313.3 26.5 257.4 382.5 275.3 41.8 131.7 402.8 38.0 14.7*

U19A 287.9 39.5 159.3 404.7 273.5 41.1 153.2 400.8 14.5 4.0*

U19B 285.0 32.2 192.7 379.0 273.8 41.9 153.2 404.7 11.3 3.7*

U07 295.3 31.3 210.9 384.7 272.6 41.5 153.2 404.7 22.7 7.7*

U02 308.3 26.5 228.3 384.7 271.3 40.9 153.2 404.7 36.0 14.0*

U16 294.8 29.6 210.9 367.4 272.7 41.7 153.2 404.7 22.1 7.8*

U11B 295.5 31.6 192.7 363.4 272.6 41.5 153.2 404.7 22.9 7.7*

U23 301.7 27.1 217.6 363.4 271.9 41.4 153.2 404.7 29.7 11.3*

Note. Mean difference = (PV1 for anomalous test-takers � PV1 for regular test-takers).
*p < .05. **p < .001.
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embeddings) and dimensionality (high vs. low) of sequential
process data.

Discussion

This study evaluated the utility of unsupervised methods
in detecting anomalous cases based on sequential process

data obtained from PIAAC 2012. Three forms of unsu-
pervised anomaly detection with the Isolation Forest
algorithm were demonstrated using different represen-
tations of sequential process data. In the first approach,
the input data consisted of test-takers’ raw action se-
quences represented by one-hot-encoding. The second
approach involved extracting a 768-dimensional feature
vector (i.e., contextual embeddings) using the BERT base
model. The third approach employed a dimension

Table 7. A descriptive summary of PSTRE proficiency levels (PV1) by anomaly status based on BERT and Isolation Forest

Item ID

Anomalous test-takers Regular test-takers

Mean difference t-statisticM SD Min Max M SD Min Max

U01A 273.3 38.1 164.3 346.4 279.7 42.4 131.7 402.8 �6.4 �1.8

U01B 296.6 31.9 191.2 379.1 277.2 42.6 131.7 402.8 19.4 6.4**

U03A 301.3 41.8 131.7 397.6 276.6 41.3 158.2 402.8 24.7 6.5**

U06A 268.8 41.6 158.2 381.3 280.6 41.9 131.7 402.8 �11.8 �3.5**

U06B 274.7 46.4 131.7 402.8 280.2 40.9 158.2 397.6 �5.5 �1.7

U21 263.2 38.2 159.3 246.6 281.7 42.1 131.7 402.8 �18.5 �6.1**

U04A 301.7 34.1 203.1 387.2 273.2 42.2 131.7 402.8 28.6 11.8**

U19A 282.3 39.8 159.3 404.7 274.2 41.2 153.2 400.8 8.1 2.1*

U19B 281.7 30.6 192.7 353.1 274.1 42.2 153.2 404.7 7.6 2.7*

U07 280.1 42.3 162.5 384.7 274.1 41.2 153.2 404.7 5.9 1.7

U02 299.2 31.8 183.8 404.7 269.4 41.1 153.2 400.8 29.8 12.6**

U16 293.3 31.4 192.7 369.7 269.9 42.1 153.2 404.7 23.4 10.3**

U11B 293.6 32.5 192.7 363.4 272.5 41.6 153.2 404.7 21.1 7.1**

U23 299.9 29.6 205.3 379.1 272.5 41.4 153.2 404.7 27.4 9.2**

Note. Mean difference = (PV1 for anomalous test-takers � PV1 for regular test-takers).
*p < .05. **p < .001.

Table 8. A descriptive summary of PSTRE proficiency levels (PV1) by anomaly status based on BERT, PCA, and Isolation Forest

Item ID

Anomalous test-takers Regular test-takers

Mean difference t-statisticM SD Min Max M SD Min Max

U01A 266.6 37.4 164.3 397.6 280.4 42.3 131.7 402.8 �13.8 �4.0*

U01B 289.6 33.2 191.2 354.3 278.0 42.7 131.7 402.8 11.6 3.7*

U03A 304.0 40.8 131.7 397.6 276.4 41.3 158.2 402.8 27.6 7.4*

U06A 272.2 37.2 195.1 381.3 279.8 42.5 131.7 402.8 �7.6 �2.1*

U06B 290.6 41.5 191.6 402.8 277.8 41.9 131.7 397.6 12.7 3.4*

U21 261.4 38.7 159.3 346.6 281.1 42.0 131.7 402.8 �19.7 �5.5*

U04A 291.2 33.1 220.1 378.5 277.8 42.7 131.7 402.8 13.5 4.3*

U19A 276.9 40.4 159.3 404.7 274.7 41.3 153.2 400.8 2.3 0.6

U19B 278.2 32.2 153.2 326.8 274.5 42.0 158.2 404.7 3.7 1.2

U07 267.2 42.3 159.3 365.4 275.7 41.0 153.2 404.7 �8.5 �2.2*

U02 297.5 32.2 183.8 404.7 272.4 41.3 153.2 400.8 25.1 8.3*

U16 286.9 35.3 192.7 384.7 273.6 41.6 153.2 404.7 13.4 4.1*

U11B 295.1 32.0 211.3 363.4 272.6 41.5 153.2 404.7 22.5 7.5*

U23 295.7 31.8 183.8 353.1 272.9 41.5 153.2 404.7 22.9 7.3*

Note. Mean difference = (PV1 for anomalous test-takers � PV1 for regular test-takers).
*p < .05. **p < .001.
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Figure 7. The distribution of PSTRE proficiency level (PV1) by anomaly status.
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reduction technique (PCA) after extracting the 768-
dimensional feature vector using BERT and yielded a
lower-dimensional form of the contextual embeddings.
To compare the results of these approaches, we analyzed
the action sequences extracted from the PSTRE tasks
included in PIAAC 2012. Our goal was to explore the
characteristics of anomalous and regular test-takers
identified by each method, investigate the relationship
between anomaly status and test-takers’ background
characteristics and test-taking behaviors, and investigate
how these characteristics differed based on the data
processing step we adopted (i.e., raw action sequences,
high-dimensional contextual embeddings, or lower-

dimensional contextual embeddings). We found consis-
tent results with previous studies (Guo et al., 2021; Li
et al., 2022) that a large language model, such as BERT,
can help extract features from action sequence data,
which can be used for further investigations, such as
anomaly detection.

As previously mentioned, the term anomaly is often used
to describe a negative situation based on an abnormal or
peculiar case deviating from the accepted norms. From this
definition, anomaly detection with action sequences from
the PSTRE items might be expected to highlight test-takers
with undesirable test-taking behaviors, such as careless or
disengaged responding. However, the results of our study

Table 9. Correlates of anomaly status for PSTRE items based on Isolation Forest

Item ID ICT use at home ICT use at work PV1 Number of actions Time to first action Response time

U01A �.080* �.056* .059* �.665* �.083* �.474*

U01B .049 .026 �.136* �.574* �.054* �.487*

U03A .033 .041 �.200* �.675* �.039 �.417*

U06A .016 .051 �.073* �.705* .010 �.229*

U06B .025 .040 �.168* �.575 �.095* �.421*

U21 .065* .009 �.091* �.518* �.047 �.328*

U04A .074* .067* �.271* �.728* �.060* �.355*

U19A .027 .028 �.106* �.604* .007 �.230*

U19B .018 .012 �.082* �.585* �.098* �.432*

U07 .077* .023 �.165* �.633* �.078* �.508*

U02 .077* .038 �.262* �.607* .010 �.389*

U16 .069* �.050 �.161* �.504* �.094* �.559*

U11B .077* .054* �.167* �.642* �.138* �.238*

U23 .077* .018 �.217* �.645* �.045 �.385*

Note. *p < .05.

Table 10. Correlates of anomaly status for PSTRE items based on BERT + Isolation Forest

Item ID ICT use at home ICT use at work PV1 Number of actions Time to first action Response time

U01A .076* .054* �.045 .311* .074* .423*

U01B �.049 �.010 .139* .272* .101* .351*

U03A �.010 �.043 .177* .431* .088* .352*

U06A .046 �.014 �.094* .149* .067 .099*

U06B .053* .007 �.051 .041 .054 .073*

U21 .001 .041 �.154* �.036 .081 �.003

U04A �.061* �.079* .276* .369* .265* .402*

U19A �.033 �.038 .056* .269* .074 .212*

U19B �.009 .015 .057* .386* .148* .352*

U07 �.036 .003 .048 .233* .121 .221*

U02 �.055* �.096* .282* .384* .194 .415*

U16 �.080* �.076* .233* .371* .184* .397*

U11B �.083* �.036 .158* .363* .166* .440*

U23 �.085* �.035 .188* .309* .095 .341*

Note. *p < .05.
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showed that anomalous test-takers differed from regular
ones by taking more actions executed in a longer period of
time when solving the PSTRE items. The number of
anomalous cases was particularly higher in the PSTRE
items that required a large number of actions on average
(e.g., 20.84% in U04A – Class Attendance and 21.29% in
U16 – Reply All). This finding is congruent with the previous
research suggesting that disengaged responses could also
be instantiated as idle responding (Gorgun & Bulut, 2023)
where a test-taker spends unexpectedly longer response
times, possibly leading to not-reached items (e.g., Bulut &
Gorgun, 2023a; Gorgun&Bulut, 2021). Our study indicated
that not only longer response times but also longer action
sequences may be associated with anomalous responses.
Additionally, the anomalous test-takers were generally less
likely to answer the items incorrectly than the regular test-
takers, suggesting that anomalous test-takers can be
characterized by conducting many actions and using a long
time to answer the item correctly. These results corroborate
the findings of Ulitzsch, He, and Pohl (2022) who also
analyzed the data from PIAAC 2012 and found that test-
takers with incorrect answers indicated a longer exploration
behavior but conducted fewer key actions in U01a – Party
Invitations.
Consistent with the previous studies (e.g., He et al.,

2019; Ulitzsch, He, & Pohl, 2022), our results also
showed that behavioral patterns in the action sequences
underlying anomaly status were associated with different
proficiency levels in the PSTRE test. Compared to regular
test-takers whose average proficiency levels, the average
proficiency levels of anomalous test-takers varied more
substantially across the items. Furthermore, anomalous

test-takers outperformed regular test-takers in most of the
PSTRE items, suggesting that the anomalous group might
have followed a more effective strategy in solving the
items. This finding also underlines the importance of in-
vestigating the profile of anomalous test-takers for better
differentiating between test-takers who performed well in
the PSTRE test.
To further describe the profile of anomalous test-

takers, we examined the relationship between anomaly
status and test-takers’ background variables. Previous
studies found that demographic variables such as ICT
skills use at home or work were moderately associated
with test-takers’ action sequences and proficiency levels
in the PSTRE items (e.g., He et al., 2019; Liao et al., 2019;
Zhang et al., 2021). However, the findings of the current
study did not support previous research. ICT-related
variables used in the current study (i.e., ICT skill use at
home or work) indicated weak correlations with anomaly
status. Unlike ICT-related variables, response time,
number of actions, and time to the first action indicated
stronger correlations with anomaly status. When either
raw or lower-dimensional contextual embeddings were
used, test-takers who showed shorter exploration be-
havior prior to their first action, completed fewer actions,
and spent less time in solving the items were more likely
to be identified as anomalous. However, these relation-
ships were entirely opposite when the original contextual
dimensions extracted from BERT (with 768 dimensions)
were used as the input data for the Isolation Forest al-
gorithm. These findings suggest that the Isolation Forest
algorithm was sensitive to the dimensionality of the input
data as the length of the input vector appeared to

Table 11. Correlates of anomaly status for PSTRE items based on BERT + PCA + Isolation Forest

Item ID ICT use at home ICT use at work PV1 Number of actions Time to first action Response time

U01A �.112* �.046 .099* �.510* �.065* �.351*

U01B .058* .021 �.083* �.487* �.060* �.423*

U03A .041 .046 �.198* �.674* �.04 �.415*

U06A �.008 .034 .053 �.475* .016 �.112*

U06B .016 .030 �.091* �.463* �.087* �.364*

U21 �.041 �.022 .140* �.050 �.027 �.036

U04A .025 .051 �.096* .021 �.096* �.127*

U19A .018 .012 �.017 �.520* �.021 �.223*

U19B �.015 �.024 �.027 �.590* �.126* �.445*

U07 �.008 �.012 .062* �.269* �.044 �.200*

U02 .035 .049 �.183* �.187* .000 �.183*

U16 .035 .054* �.098* �.154* �.038 �.103*

U11B .060* .023 �.164* �.677 �.132* �.237*

U23 .068* .039 �.158* �.546* �.036* �.317*

Note. *p < .05.
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influence the determination of norm (i.e., regular) and
deviant (i.e., anomalous) groups.

Limitations and Future Research

Despite the novelty of combining a large language model
with an anomaly detection algorithm to analyze sequential
process data, some limitations are also worth discussing.
First, this study only considered test-takers’ action se-
quences in the PSTRE items. However, the log file for the
PSTRE items also includes time stamps that may provide
additional information on the actions (e.g., the time re-
quired for executing each action and the time elapsed
between actions). Previous studies indicated that time
stamps combined with action sequences can reveal unique
insights about behavioral patterns in digital problem-
solving tasks (Ulitzsch, He, & Pohl, 2022). Hence, com-
bining the sequence embeddings with time stamps would
be worthwhile before running an anomaly detection al-
gorithm. Second, this study used the BERT model to
transform raw action sequences into contextual embed-
dings. As described earlier, the BERT model processes a
maximum input length of 512 tokens and truncates longer
sequences beyond this limit. Future research is needed to
explore the utility of action sequence embeddings based
on other language models capable of processing longer
sequences (e.g., Longformer; Beltagy et al., 2020). Finally,
this exploratory study focused on anomaly detection based
on action sequences in the PSTRE items. However, we
could not discuss the results in relation to the tasks pre-
sented in the items due to not having access to the doc-
umentation regarding nonreleased PSTRE items in PIAAC
2012. Future studies can investigate the role of item
content or task type in anomaly detection by using
problem-solving items from other digital assessments,
such as the National Assessment of Educational Progress
(NAEP).
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