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Abstract
Despite its proven success in various fields such as engineering, business, and healthcare, human–machine collaboration 
in education remains relatively unexplored. This study aims to highlight the advantages of human–machine collaboration 
for improving the efficiency and accuracy of decision-making processes in educational settings. High school dropout 
prediction serves as a case study for examining human–machine collaboration’s efficacy. Unlike previous research pri-
oritizing high accuracy with immutable predictors, this study seeks to bridge gaps by identifying actionable factors for 
dropout prediction through a framework of human–machine collaboration. Utilizing a large dataset from the High School 
Longitudinal Study of 2009 (HSLS:09), two machine learning models were developed to predict 9th-grade students’ high 
school dropout history. Results indicated that the Random Forest algorithm outperformed the deep learning algorithm. 
Model explainability revealed the significance of actionable variables such as students’ GPA in the 9th grade, sense of 
school belonging, self-efficacy in mathematics and science, and immutable variables like socioeconomic status in predict-
ing high school dropout history. The study concludes with discussions on the practical implications of human–machine 
partnerships for enhancing student success.
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1  Introduction

In the wake of substantial technological advancements over the last two decades, such as increased computing power, 
data storage, and network capabilities, machines have undergone a profound transformation from basic mechanization 
and automation to a state of intelligentization in recent decades [1]. The contemporary landscape witnesses intelligent 
machines not only keeping pace with human capabilities but also outperforming them in various scenarios. This trans-
formative trajectory has propelled the dynamic between humans and machines beyond the conventional paradigm of 
basic human–machine interaction, where machines primarily present information and humans make decisions [2]. The 
current era embraces an advanced stage of human–machine collaboration characterized by the convergence of cogni-
tive abilities. In this evolved paradigm, both humans and machines exhibit prowess in thinking, decision-making, and 
synergistically working together to elevate the overall quality of decisions. This symbiotic relationship heralds a new era 
where the synergy between human intellect and machine capabilities transcends traditional boundaries.

 *  Okan Bulut, bulut@ualberta.ca; Tarid Wongvorachan, wongvora@ualberta.ca; Surina He, surina1@ualberta.ca; Soo Lee, slee@air.org 
| 1Centre for Research in Applied Measurement and Evaluation, University of Alberta, 6‑110 Education Centre North, 11210 87 Ave NW, 
Edmonton, AB T6G 2G5, Canada. 2Measurement, Evaluation, and Data Science, University of Alberta, Edmonton, AB, Canada. 3American 
Institutes for Research, Arlington, VA, USA.

http://orcid.org/0000-0001-5853-1267
http://orcid.org/0000-0002-9622-3780
http://orcid.org/0000-0002-9859-9749
http://orcid.org/0009-0004-0413-7909


Vol:.(1234567890)

Research	 Discover Education           (2024) 3:109  | https://doi.org/10.1007/s44217-024-00209-4

The effectiveness of human–machine collaboration can also be significantly augmented by integrating an explain-
ability layer into machines. This innovative approach, commonly known as Explainable Artificial Intelligence (XAI), serves 
as a crucial bridge between the complex, opaque decision-making processes of machine learning (ML) models and the 
human stakeholders interacting with them [3, 4]. In essence, XAI acts as a cornerstone for building trust in the symbiotic 
relationship between humans and intelligent systems. By mitigating the “black box” problem associated with complex 
ML algorithms, the layer of explainability empowers machines to elucidate their reasoning processes in a manner that is 
comprehensible and inherently trustworthy to humans [5]. This transparency not only enhances accountability but also 
allows human stakeholders to validate and contextualize the decisions made by intelligent systems.

Recent research indicates a growing inclination among humans to engage in collaborative efforts with machines, as 
highlighted by Haesevoets et al. [6]. The synergistic decision-making process involving both humans and machines has 
consistently outperformed decisions made in isolation by either party, as evidenced by the findings of Xiong et al. [7]. 
Although human–machine collaboration has become prevalent in domains like engineering, healthcare, business, and 
organizational settings, its adoption in education remains significantly understated. This study aims to address this gap 
by exploring the integration of human–machine collaboration within the educational landscape. Specifically, our focus 
is on demonstrating the practical implementation of human–machine collaboration in education. To achieve this, we 
examine the critical issue of predicting high school dropouts. Our goal is to showcase the effectiveness of this collabo-
rative approach within this context and to identify actionable factors contributing to dropout prediction by utilizing 
various XAI techniques.

2 � Theoretical framework

Given the multidisciplinary nature of this study, the following sections provide a detailed literature review covering: (1) 
a broad definition of human–machine collaboration; (2) the application of human–machine collaboration across various 
domains; (3) an overview of XAI and commonly used XAI techniques; (4) a review of previous studies utilizing machine 
learning techniques to predict high school dropouts; and (5) the motivation behind this study.

2.1 � Human–machine collaboration

Contemporary human–machine collaboration refers to the synergistic partnership between humans and intelligent 
machines. These machines can take various forms, including automated systems, autonomous agents, robots, algorithms, 
or artificial intelligence (AI) entities [8, 9]. This collaborative approach results in enhanced performance by leveraging the 
strengths of both intelligent machines and human intelligence, addressing their respective limitations [10–12]. Intelligent 
machines also excel in processing vast amounts of information and generating rational outcomes without succumbing 
to cognitive biases (e.g., availability bias, representativeness bias, and anchoring effect) or being swayed by internal and 
external factors (e.g., ability, cognitive style, emotions, workload, fatigue, and time pressure) [13]. Conversely, humans 
possess unique advantages in employing intuition and experience to discern critical factors, adapt to novel conditions, 
and rapidly learn and apply reasoning to navigate high uncertainty or tackle new, complex, and rare challenges.

In light of these benefits, human–machine collaboration has experienced a growing application across diverse 
domains, including engineering [13], healthcare [11, 14], and business [15, 16]. For example, a study by Wilson and 
Daugherty [17] analyzed 1500 companies spanning 12 industries and found that the most substantial performance 
enhancements occurred when humans collaborated with machines. Moreover, research indicates that human–machine 
collaboration surpasses the efficacy of operations involving only humans or machines separately. For instance, a study by 
Xiong et al. [7] explored the performance of human-only, machine-only, and human–machine joint teams in a sequen-
tial risky decision-making task. Specifically, in the Balloon Analogue Risk Task (BART), human and machine participants 
pump up balloons of different colors in a virtual interface to earn money, facing a choice between securing the current 
amount in a permanent bank or risking another pump for greater rewards. Each additional pump increases the potential 
earnings stored in a temporary bank but also raises the risk of the balloon exploding, which would result in losing all 
the money accumulated in that trial. In the human–machine joint team, the machine can either serve as a subordinate, 
offering recommendations on whether to pump, or as an equal partner, where both human and machine decisions hold 
equal weight in a ‘one vote, one rule’ system. The findings of this study revealed that two types of human–machine joint 
teams both outperformed human-only and machine-only teams. In the human–machine joint team, the machine as 
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a partner entailed human decision-makers to cede power and coordinate, and their pumping decisions became more 
conservative and fluctuating.

The trajectory of human–machine collaboration also extends to medical disciplines. A noteworthy example of suc-
cessful human–machine collaboration in healthcare is evident in cancer detection through the analysis of lymph node 
cell images [11]. The study demonstrated that combining predictions from a deep learning system with diagnoses from 
a human pathologist achieved an area under the receiver operating curve (AUC) of 0.995, surpassing the AUC of the deep 
learning system alone (0.925) and that of the pathologist alone (0.966). This integration resulted in a remarkable reduction 
in error rates, amounting to at least 85%. Beyond cancer detection, collaborative frameworks have been instrumental in 
areas such as personalized medicine, where the integration of machine-generated insights with clinical expertise allows 
for tailored treatment plans based on individual patient characteristics (e.g., [18]).

2.2 � Explainable AI

The human–machine collaboration can be enhanced by enabling machines to explain their reasoning in a way that is 
understandable and trustable to humans [5]. This can be achieved through the integration of XAI [19]. XAI, a sub-field of 
AI, provides human-interpretable explanations regarding the rationale, strengths, weaknesses, and anticipated behavior 
of AI systems [4, 20]. In recent years, the significance of XAI has increased due to the widespread applications of advanced 
AI techniques such as deep learning models. Despite their remarkable accuracy in predictions and classifications, these 
models are often characterized as “black box” models [20, 21]. This label stems from the reliance of machine learning 
models on mathematical constructs, featuring an extensive array of abstract, numerical parameters, often numbering 
in the millions or even billions. These parameters are learned from training data, presenting a challenge in offering pro-
found insights into the intricate dependencies, causal relationships, and internal structures of the models [3, 22]. The 
opaqueness inherent in these black box models introduces the potential for misleading users [23], raising substantial 
concerns, particularly in sensitive domains such as healthcare and other applications that involve human life, rights, 
finances, and privacy [3].

To enhance the interpretability of AI outputs, researchers have proposed various XAI methods. According to the latest 
comprehensive review conducted by Minh et al. [24], XAI methods fall into three main categories: pre-modeling explain-
ability, interpretable models, and post-modeling explainability. The pre-modeling explainability method involves a set of 
data processing approaches applied to gain insights into datasets used for training ML models. This includes data analy-
sis, summarization, and transformation. On the other hand, interpretable models refer to those that can be understood 
by humans through examination of the model summary or parameters, such as linear models, decision trees, k-nearest 
neighbors, and rule-based models. Lastly, the post-modeling explainability method aims to enhance the interpretability 
of existing black-box ML models by employing various techniques.

Given its widespread application, Minh et al. [24] categorized post-modeling explainability techniques into four main 
types. First, textual justification generates explanatory text in the form of phrases or sentences. Second, visualization 
provides clarity through visual images, utilizing techniques like layer-wise relevance propagation (LRP) and local inter-
pretable model-agnostic explanation (LIME). Third, simplification creates a new and simpler system from complex ML 
models, employing techniques such as local explanation and example generation. Fourth, feature relevance quantifies 
the importance of input variables, incorporating techniques like SHapley Additive exPlanations (SHAP). According to 
Minh et al.’s [24] summary, visualization, simplification, and feature relevance emerge as the three commonly used XAI 
methods, emphasizing their role in rendering AI systems more transparent and understandable.

2.3 � Predicting high‑school dropout

The issue of high school dropouts has long been a focal point in education. For example, research conducted in Wisconsin 
revealed that approximately 3000 students discontinue their education before reaching the 12th grade, with around 
1500 of these dropouts occurring during the 9th and 10th grades [25]. In response to this concerning trend, researchers, 
policymakers, and school administrators have focused on developing early warning systems powered by ML models. 
These systems aim to identify students at risk of dropping out of high school and uncover actionable predictors to inform 
future interventions and policy adjustments [26, 27].

To date, a plethora of studies have harnessed ML models to forecast high school dropout, though they have not explic-
itly focused on the perspective of human–machine collaboration. Additionally, most of these studies base their predic-
tions on various background and demographic characteristics exhibited by students, including low grades, aggressive 
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behavior, student poverty, and high absenteeism. For instance, Sara et al. [28] employed the Random Forest algorithm 
to predict the dropout status of Danish high school students, utilizing demographic and school-related variables such as 
gender, school and class size, and teacher–pupil ratio. Chung and Lee [29] similarly utilized RF to anticipate the dropout 
status of Korean high school students. In contrast, Sansone [30] delved into the dropout phenomena among American 
students, employing Support Vector Machine, Boosted Regression, and Post-LASSO algorithms. Interestingly, this study 
discovered that GPA, rather than demographic variables, emerged as the most accurate predictor.

While ML models have been extensively employed in dropout prediction, only a limited number of studies have 
integrated XAI to comprehend high school or college dropout [16, 31, 32]. For example, Krüger et al. [31] investigated 
dropout factors within the Brazilian technical school system using XAI methods, specifically SHAP and LIME. The find-
ings highlighted the significance of the year of elementary school completion, the family’s minimum wages, and the 
mother’s education and work characteristics as important predictors of dropout. Additionally, Nagy and Molontay [22] 
also employed XAI techniques, SHAP and LIME, revealing that a higher GPA in high school or higher marks in the math-
ematics section of the matura exam could significantly reduce the likelihood of college dropout.

A significant drawback in prior research exploring high school dropouts through ML models or XAI lies in the substan-
tial reliance on immutable predictors rather than actionable predictors. Immutable predictors encompass variables over 
which students, teachers, administrators, and family or community members possess limited or no control—examples 
include gender, ethnicity, and socioeconomic status. On the other hand, actionable predictors, also known as malleable 
predictors, denote variables that are recent or real-time, adaptable, and amenable to intervention. These predictors 
can be utilized to implement tailored interventions or modify the current education system. Examples of actionable 
predictors include orientation to the future and academic habits of mind, such as self-regulation, self-efficacy, and time 
management [33].

2.4 � Current study

While prior studies have made significant contributions to the domains of human–machine collaboration, explainable 
AI, and high school dropout prediction, there remain notable gaps that warrant further exploration. Firstly, despite 
the burgeoning use of human–machine collaboration in fields such as engineering, business, and healthcare, its 
application within the context of education remains underexplored. However, the potential benefits of incorporating 
human–machine collaboration in education are substantial. This approach has the capacity to enhance efficiency and 
accuracy, allowing educators to dedicate more time to personalized teaching methods. Furthermore, the integration 
of AI can yield results that are more user-friendly, ultimately assisting teachers in improving student engagement and 
achievement. Therefore, this study seeks to exemplify the implementation of human–machine collaboration in education, 
using high school dropout prediction as a case study. Secondly, previous research on predicting high school dropouts 
through ML or XAI techniques has primarily concentrated on achieving higher prediction accuracy based on immutable 
predictors. However, these predictors offer limited guidance for conducting interventions or modifying the current edu-
cation system. Consequently, this study aims to address these dual gaps by identifying actionable factors for predicting 
high school dropouts through the incorporation of the human–machine collaboration paradigm shown in Fig. 1.

3 � Method

In this section, we detail: (1) the dataset used in this study, including the distribution of demographic information; (2) 
the preprocessing procedures for selecting variables and handling missing data; (3) data splitting and augmentation 
procedures; (4) two classification algorithms (i.e., Random Forest and deep learning) employed in this study; and (5) the 
XAI methods used to interpret the models.

3.1 � Dataset

This study used empirical data from the High School Longitudinal Study of 2009 (HSLS:09).1 HSLS:09 is a nationally 
representative, longitudinal study that investigated possible factors impacting 9th-grade students’ postsecondary 

1  https://​nces.​ed.​gov/​surve​ys/​hsls09/.

https://nces.ed.gov/surveys/hsls09/
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education and career trajectories in the United States [32]. In this study, we excluded students for whom the sub-
mitted information was not reported by their parents to preserve an accurate representation of variables involving 
parent-related constructs such as parent education and parental expectations of their child. After this removal, the 
final sample consisted of 16,137 students.

A review of the students’ demographic background revealed that the majority of their parents attained an educa-
tional level equivalent to high school or General Educational Development, with n = 6298 (39%) for mother/female 
guardian and n = 5376 (33%) for father/male guardian. The gender distribution among the students was balanced, 
with 8111 males and 8026 females. In terms of ethnicity, the majority of students were white (n = 9313; 58%), followed 
by Hispanic (n = 2433; 15%) and Black (n = 1480; 9%) students. Students from other races account for n = 2911 (18%). 
Geographically, the majority of the students came from the Southern (n = 6525, 40%) and Midwestern (n = 4332, 
27%) regions of the United States. With respect to the school locale, 5803 students (36%) were from suburban areas, 
4686 students (29%) were from city areas, 3784 students (23%) were from rural areas, and 1864 (12%) students were 
from town areas.

3.2 � Data preprocessing

The data preprocessing started with an initial review of the dataset obtained from the HSLS:09 website, encompass-
ing 23,503 students and 67 variables, including the target variable indicating students’ high school dropout history. 
As previously mentioned, students with missing parental responses were excluded, resulting in a final sample of 
16,137 students. Within the dataset, 42 variables (63%) were categorical, while 25 variables (37%) were continuous. 
A thorough examination of the variables in the dataset was conducted, with a focus on identifying and quantifying 
missing values. The dataset exhibited an overall missing value rate of 14.5%.

To enhance data quality, variables with missing value percentages exceeding 30% were eliminated, thereby reduc-
ing the initial set of 67 variables to 51. Subsequently, the remaining missing values underwent replacement using a 
Random Forest-based multivariate imputation through chained equations, employing the mice package [13] in R (R 
Core Team, 2022). Following imputation, a correlation analysis was executed on the dataset to identify variables that 
were not correlated with the target variable (i.e., high school dropout history). Figure 2 shows the correlation matrix 

Fig. 1   The proposed frame-
work for human–machine 
collaboration
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of the pre-trimmed dataset. Further refinement involved removing variables based on their theoretical relevance 
and correlation insignificance. The final dataset, comprising 16,137 students and 37 variables (23 categorical and 14 
continuous), underwent a final correlation analysis, as illustrated in Fig. 3.

3.3 � Data split and augmentation

The preprocessed dataset was split into two parts: a training dataset (70%) and a testing dataset (30%). Next, the 
proportion of the target variable (i.e., high school dropout history) was examined prior to the predictive modeling 
phase. The proportion between the two classes of the target variable in the dataset appeared highly skewed (i.e., a 
small number of dropout cases relative to the number of students who graduated from high school). In the training 
dataset, there was a severe class imbalance in the high school dropout history variable, with 1376 students dropping 
out before high school graduation and 9919 students who did not drop out (the disparity ratio was approximately 
7:1). This imbalance was expected due to the occurrence rarity of the dropout phenomenon [34].

Fig. 2   The correlation matrix plot for the pre-trimmed dataset
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To address the imbalance issue, we utilized a hybrid resampling technique involving both the Synthetic Minority 
Oversampling Technique for Nominal and Continuous (SMOTE-NC) and Random Undersampling (RUS) [12, 15]. This 
combination of techniques allowed us to synthesize the minority class while also undersampling the majority class. 
The SMOTE-NC configuration for synthesizing the minority data points was based on their five nearest neighbors 
and 0.8 resampling ratios. The final sample of the training dataset was n = 15,870, with 7935 cases for each class of 
high school dropout history. We did not balance classes of the target variable in the testing dataset to reflect real-life 
conditions with class imbalance. Hence, the final sample size of the testing dataset was n = 4842, with 4214 for the 
majority class (i.e., non-dropped-out students) and 628 for the minority class (i.e., dropout students) of high school 
dropout history.

3.4 � Classification algorithms

We utilized two classification algorithms to predict high school dropout, namely Random Forest with a collection of 
decision tree classifiers [35] and deep learning through the Keras library [27, 32] in Python.

Fig. 3   The correlation matrix plot for the final dataset
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3.4.1 � Classification with random forest

For the Random Forest classifier, a randomized grid search was performed to look for the optimal hyperparameter values. 
The search space comprised 50 sets of hyperparameter values fitted with threefold cross-validation (threefold CV), total-
ing 150 model fits. Candidate hyperparameter values were selected for the maximum tree depth (max_depth), number 
of trees (N_estimators), and number of features factored in determining the best node split (max_features). The options 
for max_depth values were generated from an array of 20 evenly spaced values between 100 and 500 (inclusive). The 
options for N_estimators were generated from an array of 20 evenly spaced values between 200 and 2000 (inclusive). For 
max_features, the options were ‘auto’ in which all features were used, ‘sqrt’ in which the square root of the total number 
of features was used to split, and “log2,” in which log 2 of the total number of features was used to split. The resulting 
hyperparameter values for the high school dropout prediction in this study were max_depth: 436, n_estimators: 1621, 
and max_features: ‘sqrt’.

Subsequently, the fine-tuned Random Forest model was used to select optimal features for the prediction with recur-
sive feature elimination with cross-validation (RFECV). RFECV was configured with step = 1 to sequentially remove one 
predictor at a time and CV = 5 to perform fivefold cross-validation to fit and evaluate predictor candidates. As a result, 
16 predictors were retained for the classification (see Table 2). The performance of the fine-tuned Random Forest model 
was evaluated with tenfold cross-validation on the test dataset. The prediction results of the model were consulted with 
a mean and standard deviation of accuracy, precision, recall, and the AUC score.

3.4.2 � Classification with deep learning

For the deep learning classifier with Keras, we utilized a dropout regularization layer with a sequential model to prevent 
overfitting [36]. To ensure methodological consistency, we applied the deep learning classifier to the same dataset used 
for the Random Forest classifier. We developed a six-layer neural network model. The model architecture was as follows: 
(1) an input layer with 17 features to reflect the maximum number of features; (2) a hidden layer with 128 units and a 
rectified linear unit (ReLU) activation, followed by a dropout layer with a dropout rate of 0.4;2 (3) hidden layer with 32 
units and ReLU activation, followed by another dropout layer with a dropout rate of 0.3; and (4) an output layer with 1 
unit and a sigmoid activation function. The sigmoid activation reflected the nature of the classification task, as the output 
was a probability ranging between 0 and 1.

In the training phase, the deep learning model was compiled using the binary cross entropy loss function and the 
Adam optimizer to adjust the learning rate throughout training. The model was fitted with validation_split = 0.2 to sub-
set 20% of the dataset for testing purposes, epoch = 500 to make the model iterate through the dataset 500 times, and 
batch_size = 50 to make each batch contain 50 cases in updating the model. Evaluation metrics include loss rate, mean 
squared error (MSE), and binary accuracy. Note that AUC was not included in the evaluation metric of this algorithm 
because it is a global metric that evaluates the model as a whole. However, Keras operates on batches of data during 
training, making it potentially misleading to compute AUC directly.

3.5 � Model explainability

After performing classification tasks, results from the highest-performing model were examined with XAI to explain the 
prediction, both at the global and local levels. We utilized the moDel Agnostic Language for Exploration and eXplanation 
(DALEX) module in Python to perform the XAI analysis [34]. For a global-level explanation, where the impact of variables 
on the model’s prediction as a whole can be assessed, we employed permutation-based variable importance analysis to 
identify influential predictors of high school dropout [37]. Subsequently, the influential predictors identified through this 
analysis were further examined using partial dependence profiling to understand how the prediction result changes in 
relation to the selected explanatory variable [38].

For the local-level explanation that concerns the prediction of each individual case, the breakdown method, SHAP 
value, and the LIME method were used to explain non-dropout cases and dropout cases [34, 37]. The breakdown method 
indicates the contribution of variables to the model’s prediction of a selected observation [25]. SHAP value, similar to the 

2  During the model training phase, a fraction of randomly selected neurons (in this case, 40%) in the previous layer was set to zero at each 
update, which helped prevent overfitting.
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breakdown method, explains the contribution of each variable to the final prediction. The difference, however, is that this 
method calculates the average contribution of each feature over all possible orders to account for possible interactions 
[25]. Finally, the LIME method explains the classification result by outlining features that contribute to the prediction or 
serve as evidence against the prediction [39].

4 � Results

The results section is organized into three parts. First, we present the classification results of Random Forest and deep 
learning models. Second, we provide global-level explanations, identifying which features are crucial for predicting 
high school dropout. Finally, we delve into local-level explanations, exploring how specific features contribute to the 
predictions.

4.1 � Classification outcomes

Table 1 presents the outcomes of the Random Forest classifier, providing the mean and standard deviation (SD) values 
for accuracy, precision, recall, AUC, and MSE over 10 iterations of cross-validation. For comparison, the results for the 
deep learning classifier in Table 1 also describe the mean and SD values for accuracy, precision, recall, and MSE across 
500 epochs. Comparing the evaluation metrics of both algorithms revealed that the Random Forest classifier exhibited 
a comparable mean accuracy to the deep learning classifier, with 0.88 for the Random Forest classifier and 0.87 for the 
deep learning classifier. Both models also exhibited comparable MSE, with 0.11 for the Random Forest classifier and 0.10 
for the deep learning classifier.

Although the Random Forest and Deep Learning classifiers yielded comparable outcomes in terms of accuracy and 
MSE, the Random Forest classifier outperformed the deep learning classifier in two key areas. Specifically, it achieved a 
higher precision score (0.63 compared to 0.42), and a higher AUC value (0.78 compared to 0.70). In the context of high 
school dropout prediction, precision is an important metric because resources for dropout prevention programs are often 
limited, making the allocation of the resources to students who are most likely to drop out highly important. Similarly, 
AUC is an important metric that measures the classifier’s ability to assign higher probabilities to positive instances than 
to negative instances. A high AUC value suggests that the classifier is effective in distinguishing between students who 
drop out and those who do not. This discrimination capability is vital for ensuring that intervention and support efforts 
are directed towards students at higher risk of dropping out, enhancing the overall efficacy of dropout prevention strat-
egies. The combination of higher precision and AUC values positions the Random Forest classifier as a more suitable 
choice for this high-stakes task of dropout prediction, where the consequences of misallocation of resources can have 
significant real-world implications.

The observed performance gap between the deep learning and Random Forest classifiers was anticipated, aligning 
with the well-documented characteristics of deep learning algorithms. Deep learning models, known for their intricate 
neural network architectures, typically demand a substantial amount of data to generalize effectively. However, the 
inherent complexity of these algorithms may result in diminished accuracy when faced with relatively smaller datasets, 
and an increased risk of overfitting can further exacerbate performance issues [40, 41]. The HSLS:09 dataset may not 

Table 1   Classification results 
from the random forest and 
deep learning classifiers

Classifier Performance metrics M SD

Random forest Accuracy 0.88 0.01
Precision 0.63 0.14
Recall 0.17 0.05
ROC-AUC​ 0.78 0.03
MSE 0.11 0.01

Deep learning Accuracy 0.87 0.01
Precision 0.42 0.06
Recall 0.21 0.02
ROC-AUC​ 0.70 0.02
MSE 0.10 0.01
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fully harness the potential of deep learning models, leading to a significant difference in performance compared to 
the Random Forest classifier. The Random Forest classifier’s superior accuracy and AUC values underscore its suitability 
for the specific task of dropout prediction in this dataset. Recognizing the importance of interpretability in decision-
making processes involving human stakeholders, including teachers, principals, and other school-based professionals, 
we acknowledge the need for an XAI analysis. Given the Random Forest classifier’s enhanced performance, it will be the 
focus of the XAI analysis. The interpretability afforded by the XAI analysis is critical for empowering stakeholders with 
the ability to comprehend the model’s rationale, facilitating more informed decisions regarding intervention strategies 
for at-risk students.

4.2 � XAI: global‑level explanation

For a global-level explanation, Fig. 4 presents the results of the permutation-based variable importance analysis. The 
most influential variable in students’ high school dropout was students’ 9th-grade GPA (X3TGPA9TH), followed by stu-
dents’ socioeconomic status (X1SES), father’s/male guardian’s highest level of education (X1DADEDU), mother’s/female 
guardian’s highest level of education (X1MOMEDU), and students’ interest in math (X1MTHINT). The examination of the 
remaining variables indicated that the contribution of the variables to the dropout prediction was relatively minor. This 
is evidenced by their dropout loss (see Appendix 2), which was less than 0.001 on the prediction outcome.

Figure 5 presents the results of the partial dependence profiling. Students’ 9th-grade GPA (X3TGPA9TH) exhibited the 
strongest impact on the prediction of the model, as seen from the broad range of changes in the prediction, spanning 
from approximately 0.1 to 0.6 on the y-axis. As students attained higher GPAs, their likelihood of being predicted as high 
school dropouts gradually decreased. A substantial dip in the prediction was observed at a GPA value of 2.5, suggesting 
that students whose GPA was around 2.5 or higher had a much smaller probability of being predicted as high school 
dropouts compared to those within the GPA range of 1 to 2.5.

The second most influential predictor was students’ socioeconomic status (X1SES). Intriguingly, the non-linear impact 
of socioeconomic status on high school dropout rates introduces a nuanced perspective on the conventional under-
standing of the relationship between socioeconomic status and educational outcomes. Contrary to the assumption 
that higher levels of socioeconomic status would invariably correlate with an increased likelihood of graduation, the 
U-shaped pattern in Fig. 4 suggests a more complex dynamic. While students with lower socioeconomic status are at 
a heightened risk of dropout, the surprising downturn in the likelihood of dropout within the range of − 1 to 1 implies 
that a high level of socioeconomic status may not guarantee graduation either. This unexpected finding underscores the 
multifaceted nature of the factors influencing educational attainment, emphasizing the need for a more comprehensive 
understanding of the interplay between socioeconomic status and academic success.

The two variables of the father’s level of education (X1DADEDU) and the mother’s highest level of education 
(X1MOMEDU) similarly indicated a negative influence on the prediction of dropout status. Specifically, students whose 

Fig. 4   The results of permutation-based variable importance analysis
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parents had lower levels of education exhibited the highest likelihood of being predicted as high school dropouts. This 
likelihood gradually diminished as the educational level of the parents increased.

A parallel pattern emerged in the analysis of students’ interest in mathematics (X1MTHINT), revealing a significant 
correlation with the predicted outcomes. Notably, a negative impact on the prediction results was discerned, as students 

Fig. 5   Partial dependence profiles of the five most influential variables
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with lower X1MTHINT values, indicative of diminished interest in mathematics, exhibited a heightened probability of 
being predicted as high school dropouts. Conversely, those with higher values demonstrated a lower likelihood of drop-
out prediction. This observation implies a compelling link between students’ level of interest in mathematics and their 
motivation to actively participate in their studies, suggesting that a diminished interest in the subject may contribute to a 
decline in overall academic performance [1]. This underscores the importance of recognizing and addressing motivational 
factors, such as interest in specific subjects, in the formulation of strategies aimed at reducing high school dropout rates.

4.3 � XAI: local‑level explanation

The local-level explanation of this study presents three cases of prediction: (1) a non-dropout case, (2) a dropout case 
with a low-grade 9th-grade GPA, and (3) a dropout case with a moderate 9th-grade GPA but low in other predictors. 
Table 2 displays the values of the predictors of these three cases.

4.3.1 � Non‑dropout case

Figure 6 presents the LIME explanation, the breakdown plot, and the SHAP plot for the non-dropout case. The LIME 
explanation indicates that the student holds an 83% likelihood of being predicted as a non-dropout student and a 17% 
chance of being predicted as a dropout student. Key predictors opposing the dropout prediction include their 9th-grade 
GPA (X3TGPA9TH: 4.0) and their positive self-efficacy levels in mathematics (X1MTHEFF: 0.90) and science (X1SCIEFF: 0.67). 
Among these, the 9th-grade GPA stands out as the most influential factor against the dropout prediction.

Conversely, predictors contributing to the dropout prediction are the low level of education for their father/male 
guardian (X1DADEDU: 1) and mother/female guardian (X1MOMEDU: 1), the low socioeconomic status of their family 
(X1SES: − 1.63), the negative feeling of belonging at school (X1SCHOOLBEL: − 0.39), lower levels of expectations from 
the counselor (X1COUPERCOU: 0.33) and the principal (X1COUPERPRI: 0.80) in their school, and the low perception of 
science utility (X1SCIUTI: − 0.33). For this particular student, family socioeconomic status (X1SES) was the highest con-
tributing factor to the dropout prediction. The predictive variables for this student revealed that, despite the presence 
of certain unfavorable factors, a high GPA played a pivotal role in contributing to the individual’s success in continuing 
their education without dropping out.

Table 2   Predictor values for 
three students in the HSLS:09 
dataset

Predictors No dropout Dropout with a low GPA Dropout with a 
moderate GPA

X1MOMEDU 1 2 1
X1DADEDU 1 0 1
X1SES − 1.6338 − 0.6333 − 0.8049
X1MTHEFF 0.9 − 2.04 0.1
X1MTHINT 0.55 − 1.68 − 0.18
X1SCIUTI − 0.33 − 1.32 0.1
X1SCIEFF 0.67 0.38 − 1.02
X1SCIINT 0.16 − 1.38 − 0.17
X1SCHOOLBEL − 0.39 − 0.39 0.49
X1SCHOOLENG − 0.32 1.39 − 0.72
X1SCHOOLCLI − 1.5 − 0.22 0.12
X1COUPERTEA 0.31 0.78 0.87
X1COUPERCOU 0.33 1.15 0.61
X1COUPERPRI 0.8 1.1 0.54
X3TGPA9TH 4 1 3
S1HROTHHOMWK 2 1 1
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4.3.2 � Dropout case with low 9th‑grade GPA

Figure 7 presents the LIME explanation, the breakdown plot, and the SHAP plot of the dropout case with a low 9th-grade 
GPA. The LIME explanation indicates that this student holds a 10% likelihood of being predicted as a non-dropout student 
and a 90% chance of being predicted as a dropout student. The key predictors opposing the dropout prediction include 
positive expectations of counselors at their school (X1COUPERCOU: 1.15) and time spent doing homework on a typical 

Fig. 6   The LIME explanation, the breakdown plot, and the SHAP plot of a non-dropout case
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school day (S1HROTHHOMWK: 1). Among these predictors, the expectation of counselors at their school stands out as 
the most influential factor against the dropout prediction.

Conversely, predictors contributing to the dropout prediction are the low 9th-grade GPA (X3TGPA9TH: 1.0), low socio-
economic status of their family (X1SES: − 0.63), low level of education for their father/male guardian (X1DADEDU: 0) and 
mother/female guardian (X1MOMEDU: 2), negative sense of school belonging (X1SCHOOLBEL: − 0.39), negative interest 

Fig. 7   The LIME explanation, the breakdown plot, and the SHAP plot of a dropout case with a low 9th-grade GPA
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in math (X1MTHINT: − 1.68), adverse school climate (X1SCHOOLCLI: − 0.22), low teacher expectations (X1COUPERTEA: 
0.78), low levels of self-efficacy in science (X1SCIEFF: 0.38) and mathematics (X1MTHEFF: − 2.04). Among these variables, 
the most influential factor driving the dropout prediction was the student’s 9th-grade GPA. The explanatory variables for 
this case revealed a different trend compared to the non-dropout case discussed above. In this case, a low GPA emerged 
as the primary factor increasing the student’s risk of dropout. The explanation may emphasize that a low GPA reflects 
poor academic performance, serving as a crucial indicator of the student’s struggles in their classes that contribute to 
the increased likelihood of dropout.

4.3.3 � Dropout case with moderate 9th‑grade GPA but low in other predictors

Figure 8 presents the LIME explanation, the breakdown plot, and the SHAP plot of the dropout case with a moderate 
ninth-grade GPA, respectively. The LIME explanation indicates that this case holds a 27% likelihood of being predicted as 
a non-dropout student and a 73% chance of being predicted as a dropout student. Key predictors opposing the dropout 
prediction include their 9th-grade GPA (X3TGPA9TH: 3.0) and their positive feeling of school belonging (X1SCHOOLBEL: 
0.49). Among these variables, the 9th-grade GPA stands out as the most influential factor against the dropout prediction.

Conversely, predictors contributing to the dropout prediction were the low socioeconomic status of their family 
(X1SES: − 0.80), low levels of self-efficacy in mathematics (X1MTHEFF: 0.10) and science (X1SCIEFF: − 1.02), low levels of 
education for their father/male guardian (X1DADEDU: 1) and mother/female guardian (X1MOMEDU: 1), low albeit posi-
tive principal expectation (X1COUPERPRI: 0.54), negative school engagement (X1SCHOOLENG: − 0.72), negative interest 
in math (X1MTHINT: − 0.18), low counselor expectation (X1COUPERCOU: 0.61), low teacher expectation (X1COUPERTEA: 
0.87), adverse school climate (X1SCHOOLCLI: 0.12), and limited hours spent on homework/studying on typical school 
day (S1HROTHHOMWK: 1.0). Among these, the most influential factor driving the dropout prediction is the student’s low 
self-efficacy in science (X1SCIEFF). The explanation may emphasize that despite having a moderate GPA, this student 
might have many challenges both at the individual level (i.e., low self-efficacy in math and science, interest in math, low 
school engagement) and the socio-environmental level (i.e., low socioeconomic status, low educational level in parents, 
and adverse school climate). These challenges may outweigh the mitigating effect of their GPA, heightening the risk of 
dropout.

5 � Discussion

The primary objective of this study was to highlight the efficacy of human–machine collaboration in education and exem-
plify human–machine collaboration through as a case study of high school dropout prediction. The growing importance 
of human–machine collaboration in education is driven by the need to enhance learning experiences, personalize educa-
tion, and improve educational outcomes [42]. In this study, we argue that a human-in-the-loop approach can combine 
the strengths of both educators and AI technologies, leading to more effective teaching and learning processes. While 
educators participate in the model development stage (e.g., identifying important and actionable predictors of high 
school dropout), machines can help find the best predictive model more efficiently. Furthermore, we posit that utilizing 
XAI techniques can improve educators’ understanding of the insights and recommendations provided by AI systems, 
thereby fostering trust in the adoption and use of AI-powered tools in education.

Beyond mere advancements in predictive accuracy, this study harnesses the synergistic potential of various XAI tech-
niques to unveil crucial factors influencing dropout predictions. The integration of human expertise with machine learn-
ing algorithms not only enhanced the performance of predictive models but also yielded actionable insights critical for 
targeted interventions and systemic improvements. This approach exemplifies how combining human insights with 
machine intelligence can lead to superior outcomes compared to relying on either independently. The efficiency gained 
through human–machine collaboration was particularly evident in the feature selection process. Initially, important 
predictors were identified based on their theoretical relevance, leveraging human expertise. Subsequently, the RFECV 
algorithm was employed to further refine the selection, illustrating the valuable assistance provided by machine learn-
ing algorithms.

The findings of this study also underscore the importance of XAI in understanding and utilizing predictors of high 
school dropout. By applying various XAI techniques, our study unveiled critical factors influencing dropout predictions. 
These factors included high school GPA as an indicator of student achievement, students’ sense of school belonging, 
perception of science utility, interest in mathematics, and self-efficacy in both mathematics and science. XAI not only 
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improved model transparency but also provided insights that are essential for crafting effective educational strategies. 

Fig. 8   The LIME explanation, the breakdown plot, and the SHAP plot of a dropout case with a moderate 9th-grade GPA
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For example, improving students’ perception of science utility can be achieved by presenting the subject matter in a 
context that highlights its real-world applications, rather than relying solely on traditional textbook-based lectures. This 
approach has been shown to foster a deeper understanding and greater engagement among students [43]. Similarly, 
enhancing students’ sense of school belonging through collaborative efforts among parents, teachers, and students 
can positively impact students’ well-being and academic performance [44]. Furthermore, initiatives such as parent-
teacher-school conferences have proven effective in creating a supportive environment, leading to improved school 
attendance and involvement in academic activities [45]. This collaborative intervention holds the promise of positively 
impacting students’ overall well-being, translating into improved school attendance, enhanced academic performance, 
and heightened involvement in various academic activities, as elucidated by previous research [46].

This collaborative approach stands as a testament to the transformative impact that human–machine partnerships 
can have on shaping educational strategies and fostering student success. One noteworthy point is that the collabora-
tion between humans and machines should not be limited to a superficial application where the machine’s input is used 
just once. Instead, it should evolve into an iterative cycle where the insights generated by machines and humans inform 
and validate each other. In this approach, human insights can dynamically refine and guide the modeling process, con-
tinually incorporating and responding to preliminary results. In the context of high school dropout, we anticipate that 
different stakeholders in education (e.g., teachers, school administrators, and parents) can leverage the insights derived 
from predictive models to address risk factors associated with high school dropout and build a more supportive learn-
ing environment for students.

5.1 � Limitations and future research

This study has several limitations worth noting. First, both predictive models utilized in this study exhibited low recall, 
suggesting room for improvement in identifying dropout cases [35]. A high prediction accuracy with low recall indicates 
that while the model may not identify all dropout instances, it is reliable when it does [35]. This limitation could be a 
consequence of the class imbalance in the targeted variable, despite being mitigated by the resampling process [15]. 
Future studies could explore various class imbalance mitigation techniques to identify the most effective strategy for 
dropout prediction. In this study, we opted for a single technique as our focus was not on testing multiple imbalance 
mitigation strategies, which is typically the aim of methodological papers.

Second, there are some conflicts in the prediction that may happen due to the interaction of the predictors. For 
instance, consider the dropout case with a low GPA. The LIME explainer and breakdown plot suggest that students’ nega-
tive self-efficacy in mathematics serves as evidence against the dropout prediction, albeit with low influence, a result 
that may seem counterintuitive from a theoretical perspective. In contrast, its SHAP plot indicates a stronger positive 
contribution of negative math self-efficacy to the dropout prediction, a suggestion aligned with the existing literature.

Another discrepancy is in the impact of students’ hours spent on homework/studying on a typical school day 
(S1HROTHHOMWK) in predicting students’ dropout. In the case of a student with a low 9th-grade GPA (refer to Sect. 4.3.2), 
the variable counteracts the dropout prediction. Conversely, in the case of a student with a moderate 9th-grade GPA (refer 
to Sect. 4.3.3), it contributes to the prediction of a dropout. Interestingly, this variable is absent in the SHAP output for the 
former scenario, suggesting that its influence might be less significant compared to the latter scenario. This discrepancy 
can be attributed to the thoroughness of the SHAP analysis compared to the LIME and the breakdown method. SHAP 
analyzes every possible combination of predictors, accounting for predictor interactions, albeit at the expense of longer 
computational time. Consequently, suggestions from SHAP may take precedence over the other two analyses when sup-
ported by theory and when they align more logically with the broader context. This limitation could serve as a guideline 
for future studies to consider results from multiple analyses in interpreting the predictions of a model.

5.2 � Conclusion

This study underscores the paramount importance of cultivating a collective intelligence framework, wherein human 
involvement remains pivotal in validating the outcomes of predictive models before initiating any actionable measures. 
Despite the remarkable advancements achieved through AI and machine learning techniques, the indispensable role 
of human validation cannot be overstated. Establishing a synergy between AI and human expertise ensures a compre-
hensive and nuanced understanding of the intricate factors influencing high school dropout predictions. In the case of 
school dropout, as illustrated in this study, the utilization of information derived from the machine learning algorithm 
can offer insights into students’ interest in a subject or their engagement in class. These variables may not be immediately 
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apparent through simple observation, yet they can offer invaluable contributions to the decision-making process led 
by humans. By incorporating human judgment into the validation process, we mitigate the risks of potential biases or 
oversights inherent in purely automated approaches. This emphasis on collective intelligence not only instills a sense of 
accountability and reliability in the predictive models but also reinforces the idea that technology should complement 
and augment human capabilities rather than replace them. In educational contexts, this approach promotes a harmoni-
ous collaboration that maximizes the strengths of both human and machine intelligence, fostering more informed and 
responsible decision-making processes.
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Appendix 1. List of utilized HSLS:09 variables

Type Variable name (variable code)

Continuous Students’ socioeconomic status composite score (X1SES)
Students’ mathematics self-efficacy (X1MTHEFF)
Students’ interest in fall 2009 math course (X1MTHINT)
Students’ perception of science utility (X1SCIUTI)
Students’ science self-efficacy (X1SCIEFF)
Students’ interest in fall 2009 math course (X1SCIINT)
Students’ sense of school belonging (X1SCHOOLBEL)
Students’ school engagement (X1SCHOOLENG)
Scale of school climate assessment (X1SCHOOLCLI)
Scale of counselor’s perceptions of teacher’s expectations (X1COUPERTEA)
Scale of counselor’s perceptions of counselor’s expectations (X1COUPERCOU)
Scale of counselor’s perceptions of principal’s expectations (X1COUPERPRI)
Students’ GPA in ninth grade (X3TGPA9TH)

Categorical Hours spent on homework/studying on typical school day (S1HROTHHOMWK)
Mother’s/female guardian’s highest level of education (X1MOMEDU)
Father’s/male guardian’s highest level of education (X1DADEDU)
How far in school 9th grader thinks he/she will get (X1STUEDEXPCT)

https://nces.ed.gov/datalab/onlinecodebook
https://nces.ed.gov/datalab/onlinecodebook
http://creativecommons.org/licenses/by/4.0/
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Type Variable name (variable code)

How far in school parent thinks 9th grader will get (X1PAREDEXPCT)
How often 9th grader goes to class without his/her homework done (S1NOHWDN)
How often 9th grader goes to class without pencil or paper (S1NOPAPER)
How often 9th grader goes to class without books (S1NOBOOKS)
How often 9th grader goes to class late (S1LATE)
9th grader thinks studying in school rarely pays off later with a good job (S1PAYOFF)
9th grader thinks even if he/she studies, he/she will not get into college (S1GETINTOCLG)
9th grader thinks even if he/she studies, family cannot afford college (S1AFFORD)
9th grader thinks working is more important for him/her than college (S1WORKING)
9th grader’s closest friend gets good grades (S1FRNDGRADES)
9th grader’s closest friend is interested in school (S1FRNDSCHOOL)
9th grader’s closest friend attends classes regularly (S1FRNDCLASS)
9th grader’s closest friend plans to go to college (S1FRNDCLG)
Hours spent on math homework/studying on typical school day (S1HRMHOMEWK)
Hours spent on science homework/studying on typical school day (S1HRSHOMEWK)
How sure 9th grader is that he/she will graduate from high school (S1SUREHSGRAD)
How often parent contacted by school about problem behavior (P1BEHAVE)
How often parent contacted by school about poor attendance (P1ATTEND)
How often parent contacted by school about poor performance (P1PERFORM)
Ever dropped out of high school in 2016 (X4EVERDROP)

Appendix 2. Dropout loss of features in the random forest model

Variable name Dropout loss

_baseline_ 0.398996
X3TGPA9TH 0.366120
X1SES 0.344684
X1MOMEDU 0.336173
X1DADEDU 0.334339
X1MTHINT 0.332290
X1SCIUTI 0.331758
X1SCHOOLCLI 0.331700
_full_model_ 0.331461
X1SCIINT 0.331290
X1COUPERCOU 0.331213
X1SCHOOLBEL 0.331177
X1COUPERTEA 0.331015
X1SCHOOLENG 0.330908
X1SCIEFF 0.330805
S1HROTHHOMWK 0.330707
X1MTHEFF 0.330504
X1COUPERPRI 0.330412
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